Scorpion sting

Last updated
Scorpion sting
Buthus pyrenaeus 283677889.jpg
Scorpion stinger with a droplet of venom
Specialty Dermatology, Emergency medicine
Symptoms Pain, bleeding, swelling, parathesia
Complications Envenomation
Causes Scorpions

A scorpion sting is an injury caused by the stinger of a scorpion resulting in the medical condition known as scorpionism, which may vary in severity. The anatomical part of the scorpion that delivers the sting is called a "telson". In typical cases, scorpion stings usually result in pain, paresthesia, and variable swelling. In serious cases, scorpion stings may involve the envenomation of humans by toxic scorpions, which may result in extreme pain, serious illness, or even death depending on the toxicity of the venom. [1] [2] [3]

Contents

Most scorpion stings range in severity from minor swelling to medically significant lesions, with only a few able to cause severe allergic, neurotic or necrotic reactions. However, scorpion stings account for approximately 3,000 deaths a year worldwide. [4] The Brazilian yellow scorpion ( Tityus serrulatus ) is one species known for being especially dangerous, being responsible for most scorpion sting fatalities in South America. [4]

Scorpion stings are seen all over the world but are predominantly seen in the tropical and subtropical areas. In the Western hemisphere, these areas include Mexico, northern South America and southeast Brazil. In the Eastern hemisphere, these regions include Sub-Saharan Africa, the Middle East, and the Indian subcontinent.

Characteristics and side effects

The byproducts of some arthropods may be used as an aphrodisiac. Some of these arthropods whose byproduct may be used as medicines can be found in North America. [5] Across North America, the Arizona bark scorpion (Centruroides sculpturatus) has proven to be the most venomous scorpion. While stings from this species will rarely result in death, side effects can include numbness, tingling, convulsions, difficult breathing, and occasionally, paralysis. These side effects may last up to 72 hours after injection of the venom. It is also observed that penile erection may occur after being stung. The pain of a sting from the Arizona Bark Scorpion has been compared to being struck by a bolt of lightning or electrical current. [5] These symptoms may become visible 4 to 7 minutes after envenomation.

Envenomation of a human by a scorpion may affect the sympathetic or parasympathetic systems depending on the species of scorpion. Some of the more severe side effects include respiratory distress syndrome, pulmonary edema, cardiac dysfunction, impaired hemostasis, pancreatitis, and multiple organ failure. Additionally, treatment of the sting depends on the severity of the incident, which is classified as mild, moderate, or severe. This treatment is composed of three different aspects of the sting: symptomatic measures, vital functions support, and injection antivenom. Not all envenomations result in systemic complications; only a small proportion of stings have this effect on the victim. [6]

Mechanism

The composition of scorpion venom consists of different compounds of varying concentrations. The compounds consist of neurotoxins, cardiotoxin, nephrotoxin, hemolytic toxin, phosphodiesterases, phospholipase, histamine, serotonin, etc. Of these different toxins, the most important and most potent one is the neurotoxin concentration. This compound has neuromuscular and neuroautonomic effects, as well as damages the surrounding local tissue. Neurotoxins work to change voltage-dependent sodium channels, resulting in prolonged neuronal and neuromuscular activity. This prolonged activity of sodium channels results in an erection. There may be nerve damage due to the stabilization of voltage-dependent sodium channels in the open conformation. This position leads to the prolonged and continuous firing of neurons in the somatic, sympathetic, and parasympathetic nervous systems. Continuous firing of neurons causes over excitation and prevents the transmission of normal nerve impulses down the axon. [5]

The venom composition of the deathstalker scorpion contains neurotoxins which are almost completely responsible for this symptom. The poison from this scorpion contain 4 components: chlorotoxin, charybdotoxin, scyllatoxin, and agitoxins. Upon injection with the venom, sacral parasympathetic nerve are stimulated causing a change in the neuronal transmission in vascular and nonvascular smooth muscles. The compound known as the vasoactive intestinal polypeptide (VIP) is the main transmitter. This polypeptide is realized from nerves found long the erectile tissue of the corpus calosum. VIP is the strongest relaxant of penile smooth muscle structure, resulting in an erection upon envenomation. This is the proposed mechanics for all scorpion of the family Buthidae, whose venom composition contains these compounds. [5]

Epidemiology

Overview

Scorpions are nocturnal animals that typically live in deserts, mountains, caves, and under rocks. It is when they are disturbed that they attack. Scorpions that possess the ability to inject toxic venom with their sting belong to the family Buthidae. The Middle East and North Africa are home to the deadliest scorpions, belonging to the genus Buthus , Leiurus , Androctonus , and Hottentotta . In South America, the deadliest scorpion belongs to genus Tityus . In India and Mexico, the deadliest scorpions involved in scorpionism are Mesobuthus and Centruroides , respectively. [7]

Weather, seasons, and climate

Scorpions are nocturnal arachnids that have shown a seasonal pattern that is also related to climate. [8] Specifically in Central America, scorpion attacks are mostly seen during the hot months of the year, noting that in Argentina this occurs in the months of October to April. Additionally, a rainy climate may also change the frequency of scorpion incidents. Lower levels of rainfall, specifically precipitation below 30 mm/month, can be associated with fewer scorpion stings, whereas rainfall greater than 30 mm/month shows no relationship to incident rate. This could be due to potentially disruptive effects of rainfall on scorpion habitat. [6]

Central America

In Central America, most scorpion stings are mildly toxic to humans. However, Panama has reported an incidence of 52 cases per 100,000 people in 2007. Between 1998 and 2006, 28 people have died as result of scorpion stings. In Panama, the taxa of scorpions responsible for these deaths belong to the genus Tityus. This scorpion species is also found in parts of northern South America. Historically, the presence of these scorpions in Panama could be due to the closure of the Panamanian isthmus, thus allowing for the migration of the scorpions from Panama into the northern part of South America. [9] Tityus pachyurus is among the most important scorpionist species. Envenomation by this scorpion is characterized by intense local pain, that usually does not result in tissue injury. [6] Scorpions possess venom glands located at the distal extremity of their abdomen. There are currently 1,400 known species of scorpions and each possesses venom glands. However, of these 1,400 species, only 25 are known to be dangerous enough to humans to potentially cause death upon envenomation. [3] Other countries in Central America are habitat to the scorpion genus Centruroides. Species in this genus are only mildly toxic to humans even though they have ion channel-active toxins in their venom. [9]

Related Research Articles

<span class="mw-page-title-main">Venom</span> Toxin secreted by an animal

Venom or zootoxin is a type of toxin produced by an animal that is actively delivered through a wound by means of a bite, sting, or similar action. The toxin is delivered through a specially evolved venom apparatus, such as fangs or a stinger, in a process called envenomation. Venom is often distinguished from poison, which is a toxin that is passively delivered by being ingested, inhaled, or absorbed through the skin, and toxungen, which is actively transferred to the external surface of another animal via a physical delivery mechanism.

<span class="mw-page-title-main">Stinger</span> Sharp organ capable of injecting venom

A stinger is a sharp organ found in various animals capable of injecting venom, usually by piercing the epidermis of another animal.

Tityustoxin is a toxin found in the venom of scorpions from the subfamily Tityinae. By binding to voltage-dependent sodium ion channels and potassium channels, they cause sialorrhea, lacrimation and rhinorrhea.

<span class="mw-page-title-main">Buthidae</span> Family of scorpions

The Buthidae are the largest family of scorpions, containing about 100 genera and 1339 species as of 2022. A few very large genera are known, but a high number of species-poor or monotypic ones also exist. New taxa are being described at a rate of several new species per year. They have a cosmopolitan distribution throughout tropical and subtropical environments worldwide. Together with four other families, the Buthidae make up the superfamily Buthoidea. The family was established by Carl Ludwig Koch in 1837.

<i>Centruroides limbatus</i> Species of scorpion

Centruroides limbatus is a species of bark scorpion from Central America. Its specific name "limbatus," is from the Latin meaning "black-edged," and refers to the darkly colored markings of this species.

<span class="mw-page-title-main">Arthropod bites and stings</span> Medical condition

Many species of arthropods can bite or sting human beings. These bites and stings generally occur as a defense mechanism or during normal arthropod feeding. While most cases cause self-limited irritation, medically relevant complications include envenomation, allergic reactions, and transmission of vector-borne diseases.

Birtoxin is a neurotoxin from the venom of the South African Spitting scorpion. By changing sodium channel activation, the toxin promotes spontaneous and repetitive firing much like pyrethroid insecticides do

<i>Tityus serrulatus</i> Species of scorpion

Tityus serrulatus, the Brazilian yellow scorpion, is a species of scorpion of the family Buthidae. It is native to Brazil, and its venom is extremely toxic. It is the most dangerous scorpion in South America and is responsible for the most fatal cases.

<i>Tityus stigmurus</i> Species of scorpion

Tityus stigmurus is a species of scorpion from the family Buthidae that can be found in Brazil. The species are 4.5–6 centimetres (1.8–2.4 in) in length and are either golden-tan or yellowish-brown coloured. It takes them a year to mature into an adult, which makes them a fast-growing species. They also have a dark stripe over the mesosoma with either yellowish or orange pedipalps.

<i>Centruroides gracilis</i> Species of scorpion

Centruroides gracilis is a species of scorpion in the family Buthidae, the bark scorpions. Its common names include Florida bark scorpion, brown bark scorpion, and slender brown scorpion. In Cuba it is known as alacran prieto and alacran azul. Contrary to one of its common names, it is not actually native to Florida in the United States. It is native to northern parts of the middle Americas, including Mexico, Guatemala, Belize, and Honduras. It is present in other parts as an introduced species, including Cuba, Panama, Colombia, Ecuador, Jamaica, and Florida in the United States. It is also introduced in parts of Africa, including Cameroon and Gabon, as well as the Canary Islands.

Centruroides baergi is a species of scorpion in the family Buthidae. They are commonly found in highlands and are almost exclusively found in the states of Oaxaca and southern Puebla, Mexico. C. baergi is the most abundant scorpion of the genus in the state of Oaxaca, making up a third of Centruroides reported between 2008 and 2014.

Centruroides suffusus suffusus toxin II (CssII) is a scorpion β-toxin from the venom of the scorpion Centruroides suffusus suffusus. CssII primarily affects voltage-gated sodium channels by causing a hyperpolarizing shift of voltage dependence, a reduction in peak transient current, and the occurrence of resurgent currents.

Ts15 is produced by the Brazilian yellow scorpion Tityus serrulatus. It targets voltage-gated potassium channels, primarily the subtypes Kv1.2 and Kv1.3.

<i>Leiurus abdullahbayrami</i> Species of scorpion

Leiurus abdullahbayrami is a species of scorpion in the family Buthidae. Its venom is highly toxic to humans, but can be used in medical development.

<span class="mw-page-title-main">Scorpionism in Central America</span>

Scorpionism is defined as the accidental envenomation of humans by toxic scorpions. If the injection of venom in a human results in death, this is defined as scorpionism. This is seen all over the world but is predominantly seen in the tropical and subtropical areas. These areas include Mexico, northern South America and southeast Brazil in the Western hemisphere. In the Eastern hemisphere, scorpionism possess a public health threat in the regions of South Africa, the Middle East, and the Indian subcontinent.

<i>Tityus pachyurus</i> Species of scorpion

Tityus pachyurus is a species of arachnid endemic to Central America and South America.

Centruroides noxius is a species of scorpion native to Mexico.

<span class="mw-page-title-main">Animal attacks in Latin America</span>

List of reported attacks and species involved in Latin America.

Tityus asthenes is a significantly venomous scorpion endemic to South America. Sometimes it is known as Peruvian black scorpion.

References

  1. James, William D.; Berger, Timothy G.; et al. (2006). Andrews' Diseases of the Skin: clinical Dermatology. Saunders Elsevier. p. 455. ISBN   0-7216-2921-0.
  2. Rapini, Ronald P.; Bolognia, Jean L.; Jorizzo, Joseph L. (2007). Dermatology: 2-Volume Set. St. Louis: Mosby. pp. Chapter 83. ISBN   978-1-4160-2999-1.
  3. 1 2 Lourenço, W. R.; Cuellar, O. (1995). "Scorpions, Scorpionism, Life History Strategies and Parthenogenesis". Journal of Venomous Animals and Toxins. 1 (2): 51–62. doi: 10.1590/S0104-79301995000200002 . ISSN   0104-7930.
  4. 1 2 Chippaux, Jean-Philippe (July 5, 2012). "Emerging options for the management of scorpion stings". Drug Design, Development and Therapy. 6: 165–73. doi: 10.2147/DDDT.S24754 . ISSN   1177-8881. PMC   3401053 . PMID   22826633.
  5. 1 2 3 4 Pajovic, B.; Radosavljevic, M.; Radunovic, M.; Radojevic, N.; Bjelogrlic, B. (2012). "Arthropods and their products as aphrodisiacs--review of literature". European Review for Medical and Pharmacological Sciences. 16 (4): 539–547. ISSN   1128-3602. PMID   22696884.
  6. 1 2 3 Santos, Maria S. V.; Silva, Cláudio G. L.; Neto, Basílio Silva; Grangeiro Júnior, Cícero R. P.; Lopes, Victor H. G.; Teixeira Júnior, Antônio G.; Bezerra, Deryk A.; Luna, João V. C. P.; Cordeiro, Josué B.; Júnior, Jucier Gonçalves; Lima, Marcos A. P. (2016). "Clinical and Epidemiological Aspects of Scorpionism in the World: A Systematic Review". Wilderness & Environmental Medicine. 27 (4): 504–518. doi: 10.1016/j.wem.2016.08.003 . ISSN   1545-1534. PMID   27912864.
  7. Nejati, Jalil; Saghafipour, Abedin; Rafinejad, Javad; Mozaffari, Ehsan; Keyhani, Amir; Abolhasani, Ali; Kareshk, Amir Tavakoli (2018-07-25). "Scorpion composition and scorpionism in a high-risk area, the southwest of Iran". Electronic Physician. 10 (7): 7138–7145. doi:10.19082/7138. ISSN   2008-5842. PMC   6092148 . PMID   30128107.
  8. Jared, Carlos; Alexandre, César; Mailho-Fontana, Pedro Luiz; Pimenta, Daniel Carvalho; Brodie, Edmund D.; Antoniazzi, Marta Maria (2020-04-30). "Toads prey upon scorpions and are resistant to their venom: A biological and ecological approach to scorpionism". Toxicon. 178: 4–7. doi:10.1016/j.toxicon.2020.02.013. ISSN   1879-3150. PMID   32081637. S2CID   211230253.
  9. 1 2 Borges, A.; Miranda, R. J.; Pascale, J. M. (2012). "Scorpionism in Central America, with special reference to the case of Panama". Journal of Venomous Animals and Toxins Including Tropical Diseases. 18 (2): 130–143. doi: 10.1590/S1678-91992012000200002 . ISSN   1678-9199.