Shungite is either a diverse group of metamorphosed Precambrian rocks all of which contain pyrobitumen, or the pyrobitumen within those rocks. [1] It was first described from a deposit near Shunga village, in Karelia, Russia, from where it gets its name. Shungite is most widely known for pseudoscientific and quack medical claims about its uses in medicine and technology, where it is claimed to have properties ranging from nebulous health benefits to blocking 5G radiation. [2] [3] [4] [5] [6]
Shungite has mainly been found in Russia. The main deposit is in the Lake Onega area of Karelia, at Zazhoginskoye, near Shunga, with another occurrence at Vozhmozero. [7] Two other much smaller occurrences have been reported in Russia, one in Kamchatka in volcanic rocks and the other formed by the burning of spoil from a coal mine at high temperature in Chelyabinsk. [8] Other occurrences have been described from Austria, India, Democratic Republic of Congo [7] and Kazakhstan. [9]
The term "shungite" has evolved substantially since was originally used in 1879 to describe a black substance with more than 98% carbon found in veins near its type locality of Shunga. More recently the term has also been used to describe a wide variety of rocks containing similar carbon layers, leading to some confusion. In scientific usage, shungite refers to a mineraloid which contains >98% carbon, and is used as a modifier to the host-rock's name, i.e. "shungite-bearing dolostone". [10] In popular usage, shungite-bearing rocks are sometimes themselves referred to as shungite. Shungite is subdivided into bright, semi-bright, semi-dull and dull on the basis of its lustre. [11]
Shungite has two main modes of occurrence, disseminated within the host rock and as apparently mobilised material. Migrated shungite, which is bright (lustrous) shungite, has been interpreted to represent migrated hydrocarbons and is found as either layer shungite, layers or lenses near conformable with the host rock layering, or vein shungite, which is found as cross-cutting veins. Shungite may also occur as clasts within younger sedimentary rocks. [10]
Shungite had historically been regarded as an example of abiogenic petroleum formation, [11] but its biological origin has now been confirmed. [10] Non-migrated shungite is found directly stratigraphically above deposits that were formed in a shallow water carbonate shelf to non-marine evaporitic environment. The shungite-bearing sequence is thought to have been deposited during active rifting, consistent with the alkaline volcanic rocks that are found within the sequence. The organic-rich sediments were likely deposited in a brackish lagoon. The concentration of carbon indicates elevated biological productivity levels, possibly due to high levels of nutrients available from volcanic material. [10]
Shungite-bearing deposits that retain sedimentary structures are interpreted as metamorphosed oil source rocks. Some mushroom shaped structures have been interpreted as possible mud volcanoes. Layer and vein shungite varieties, and shungite filling cavities and forming the matrix of breccias, are interpreted as migrated petroleum, now in the form of metamorphosed bitumen. [10] Solid-bitumen shungite is predominantly amorphous, though as with many carbon deposits it contains trace amounts of carbon allotropes such as graphene sheets and fullerenes. [12]
The Shunga deposit contains an estimated total carbon reserve of more than 250 gigatonnes. It is found within a sequence of Palaeoproterozoic meta-sedimentary and meta-volcanic rocks that are preserved in a synform. The sequence has been dated by a gabbro intrusion, which gives a date of 1980±27 Ma, and the underlying dolomites, which give an age of 2090±70 Ma. There are nine shungite-bearing layers within the Zaonezhskaya Formation, from the middle of the preserved sequence. Of these the thickest is layer six, which is also known as the "Productive horizon", due to its concentration of shungite deposits. Four main deposits are known from the area, the Shungskoe, Maksovo, Zazhogino and Nigozero deposits. The Shungskoe deposit is the most studied and is largely depleted. [10]
Shungite has been used since the middle of the 18th century as a pigment for paint, [10] and is currently sold under the names "carbon black" or "shungite natural black". [8] In the 1970s, shungite was exploited in the production of an insulating material, known as shungisite. Shungisite is prepared by heating rocks with low shungite concentrations to 1,090–1,130 °C (1,990–2,070 °F) and is used as a low density filler. [10] Shungite has applications in construction technologies. [13] The presence of fullerenes has resulted in shungite being of interest to researchers as a natural reservoir. [14]
Shungite has been used as a folk medical treatment since the early 18th century. Peter the Great set up Russia's first spa in Karelia to make use of the purported water purifying properties of shungite. He also instigated its use in providing purified water for the Russian army. [15] Crystal healing pseudoscience proponents and 5G conspiracy theorists have erroneously claimed that shungite may remove 5G radiation from their vicinity more efficiently than any material of similar electrical conductivity would do. [2] [3] [4] [5] [6] Many of these claims frequently focus on the reputed benefits of fullerenes contained in shungite, which are found in concentrations of 1 to 10 parts per million. [16] [7] [17] Despite its purported health benefits, shungite contains toxic heavy metals such as lead and cadmium and can pose a health risk when used as an alternative medicine. [18]
Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. Following ejection and deposition, the ash is lithified into a solid rock. Rock that contains greater than 75% ash is considered tuff, while rock containing 25% to 75% ash is described as tuffaceous. Tuff composed of sandy volcanic material can be referred to as volcanic sandstone.
Migmatite is a composite rock found in medium and high-grade metamorphic environments, commonly within Precambrian cratonic blocks. It consists of two or more constituents often layered repetitively: one layer is an older metamorphic rock that was reconstituted subsequently by partial melting ("neosome"), while the alternate layer has a pegmatitic, aplitic, granitic or generally plutonic appearance ("paleosome"). Commonly, migmatites occur below deformed metamorphic rocks that represent the base of eroded mountain chains.
Kenorland is a hypothetical Neoarchean supercontinent. If it existed, it would have been one of the earliest known supercontinents on Earth. It is thought to have formed during the Neoarchaean Era c. 2.72 billion years ago by the accretion of Neoarchaean cratons and the formation of new continental crust. It comprised what later became Laurentia, Baltica, Western Australia and Kalaharia.
Ultramafic rocks are igneous and meta-igneous rocks with a very low silica content, generally >18% MgO, high FeO, low potassium, and are composed of usually greater than 90% mafic minerals. The Earth's mantle is composed of ultramafic rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low silica content that may not be extremely enriched in Fe and Mg, such as carbonatites and ultrapotassic igneous rocks.
The North China Craton is a continental crustal block with one of Earth's most complete and complex records of igneous, sedimentary and metamorphic processes. It is located in northeast China, Inner Mongolia, the Yellow Sea, and North Korea. The term craton designates this as a piece of continent that is stable, buoyant and rigid. Basic properties of the cratonic crust include being thick, relatively cold when compared to other regions, and low density. The North China Craton is an ancient craton, which experienced a long period of stability and fitted the definition of a craton well. However, the North China Craton later experienced destruction of some of its deeper parts (decratonization), which means that this piece of continent is no longer as stable.
The geology of Tasmania is complex, with the world's biggest exposure of diabase, or dolerite. The rock record contains representatives of each period of the Neoproterozoic, Paleozoic, Mesozoic and Cenozoic eras. It is one of the few southern hemisphere areas that were glaciated during the Pleistocene with glacial landforms in the higher parts. The west coast region hosts significant mineralisation and numerous active and historic mines.
The Zazhoginskoe field is one of the richest Russian field of shungite on the territory of the Republic of Karelia.
The geology of Ghana is primarily very ancient crystalline basement rock, volcanic belts and sedimentary basins, affected by periods of igneous activity and two major orogeny mountain building events. Aside from modern sediments and some rocks formed within the past 541 million years of the Phanerozoic Eon, along the coast, many of the rocks in Ghana formed close to one billion years ago or older leading to five different types of gold deposit formation, which gave the region its former name Gold Coast.
The geology of Ivory Coast is almost entirely extremely ancient metamorphic and igneous crystalline basement rock between 2.1 and more than 3.5 billion years old, comprising part of the stable continental crust of the West African Craton. Near the surface, these ancient rocks have weathered into sediments and soils 20 to 45 meters thick on average, which holds much of Ivory Coast's groundwater. More recent sedimentary rocks are found along the coast. The country has extensive mineral resources such as gold, diamonds, nickel and bauxite as well as offshore oil and gas.
The geology of Niger comprises very ancient igneous and metamorphic crystalline basement rocks in the west, more than 2.2 billion years old formed in the late Archean and Proterozoic eons of the Precambrian. The Volta Basin, Air Massif and the Iullemeden Basin began to form in the Neoproterozoic and Paleozoic, along with numerous ring complexes, as the region experienced events such as glaciation and the Pan-African orogeny. Today, Niger has extensive mineral resources due to complex mineralization and laterite weathering including uranium, molybdenum, iron, coal, silver, nickel, cobalt and other resources.
The geology of Sierra Leone is primarily very ancient Precambrian Archean and Proterozoic crystalline igneous and metamorphic basement rock, in many cases more than 2.5 billion years old. Throughout Earth history, Sierra Leone was impacted by major tectonic and climatic events, such as the Leonean, Liberian and Pan-African orogeny mountain building events, the Neoproterozoic Snowball Earth and millions of years of weathering, which has produced thick layers of regolith across much of the country's surface.
The geology of Uganda extends back to the Archean and Proterozoic eons of the Precambrian, and much of the country is underlain by gneiss, argillite and other metamorphic rocks that are sometimes over 2.5 billion years old. Sedimentary rocks and new igneous and metamorphic units formed throughout the Proterozoic and the region was partially affected by the Pan-African orogeny and Snowball Earth events. Through the Mesozoic and Cenozoic, ancient basement rock has weathered into water-bearing saprolite and the region has experienced periods of volcanism and rift valley formation. The East Africa Rift gives rise to thick, more geologically recent sediment sequences and the country's numerous lakes. Uganda has extensive natural resources, particularly gold.
The geology of Sudan formed primarily in the Precambrian, as igneous and metamorphic crystalline basement rock. Ancient terranes and inliers were intruded with granites, granitoids, and volcanic rocks. Units of all types were deformed, reactivated, intruded, and metamorphosed during the Proterozoic Pan-African orogeny. Dramatic sheet flow erosion prevented almost any sedimentary rocks from forming during the Paleozoic and Mesozoic. From the Mesozoic into the Cenozoic, the formation of the Red Sea depression and complex faulting led to massive sediment deposition in some locations and regional volcanism. Sudan has petroleum, chromite, salt, gold, limestone, and other natural resources.
The geology of Georgia is the study of rocks, minerals, water, landforms and geologic history in Georgia. The country is dominated by the Caucasus Mountains at the junction of the Eurasian Plate and the Afro-Arabian Plate, and rock units from the Mesozoic and Cenozoic are particularly prevalent. For much of its geologic history, until the uplift of the Caucasus, Georgia was submerged by marine transgression events. Geologic research for 150 years by Georgian and Russian geologists has shed significant light on the region and since the 1970s has been augmented with the understanding of plate tectonics.
The geology of Sweden is the regional study of rocks, minerals, tectonics, natural resources and groundwater in the country. The oldest rocks in Sweden date to more than 2.5 billion years ago in the Precambrian. Complex orogeny mountain building events and other tectonic occurrences built up extensive metamorphic crystalline basement rock that often contains valuable metal deposits throughout much of the country. Metamorphism continued into the Paleozoic after the Snowball Earth glaciation as the continent Baltica collided with an island arc and then the continent Laurentia. Sedimentary rocks are most common in southern Sweden with thick sequences from the last 250 million years underlying Malmö and older marine sedimentary rocks forming the surface of Gotland.
The geology of North Macedonia includes the study of rocks dating to the Precambrian and a wide array of volcanic, sedimentary and metamorphic rocks formed in the last 539 million years.
The geology of Kazakhstan includes extensive basement rocks from the Precambrian and widespread Paleozoic rocks, as well as sediments formed in rift basins during the Mesozoic.
The Dresser Formation is a Paleoarchean geologic formation that outcrops as a generally circular ring of hills the North Pole Dome area of the East Pilbara Terrane of the Pilbara Craton of Western Australia. This formation is one of many formations that comprise the Warrawoona Group, which is the lowermost of four groups that comprise the Pilbara Supergroup. The Dresser Formation is part of the Panorama greenstone belt that surrounds and outcrops around the intrusive North Pole Monzogranite. Dresser Formation consists of metamorphosed, blue, black, and white bedded chert; pillow basalt; carbonate rocks; minor felsic volcaniclastic sandstone and conglomerate; hydrothermal barite; evaporites; and stromatolites. The lowermost of three stratigraphic units that comprise the Dresser Formation contains some of the Earth's earliest commonly accepted evidence of life such as morphologically diverse stromatolites, microbially induced sedimentary structures, putative organic microfossils, and biologically fractionated carbon and sulfur isotopic data.
The geology of the Kimberley, a region of Western Australia, is a rock record of the early Proterozoic eon that includes tectonic plate collision, mountain-building (orogeny) and the joining (suturing) of the Kimberley and Northern Australia cratons, followed by sedimentary basin formation.
Other recommendations from Glastonbury? People should use Shungite, a mineral which is said to have healing powers that one 'healing crystal' company says 'span the board from purity to protection'.
Fernandez claims Facebook warned him his account would be restricted for posting misinformation to his page, which he also uses to promote cryptocurrency opportunities and sell shungite, a crystal which he claims prevents the effects of 5G.
Real shungite is 98% carbon, and has trace amounts of fullerenes, a type of carbon molecule that supposedly blocks electromagnetic frequencies. These pieces of jewelry or ornaments often have a much lower percentage of carbon than advertised and even lower amounts of fullerenes. There isn't much scientific evidence backing these claims, and researching shungite primarily brings up New Age-y articles spewing quackery, with no citations to actual studies or research. The 5G stickers supposedly generate some kind of shield to protect you from 5G waves. Let us be clear: A sticker that claims to generate any type of radiation-blocking shield is pure science fiction.
[Fernandez] flits between long screeds about vaccinations and claims that Covid-19 is a hoax to selling products that he claims protect users from electromagnetic fields that conspiracy theorists believe are emitted by 5G towers. A shungite pyramid crystal will protect a radius of 'approximately 6-7 metres', his website claims.