Silent stroke

Last updated
Silent stroke
Specialty Neurology

A silent stroke (or asymptomatic cerebral infarction) is a stroke that does not have any outward symptoms associated with stroke, and the patient is typically unaware they have suffered a stroke. Despite not causing identifiable symptoms, a silent stroke still causes damage to the brain and places the patient at increased risk for both transient ischemic attack and major stroke in the future. [1] In a broad study in 1998, more than 11 million people were estimated to have experienced a stroke in the United States. Approximately 770,000 of these strokes were symptomatic and 11 million were first-ever silent MRI infarcts or hemorrhages. Silent strokes typically cause lesions which are detected via the use of neuroimaging such as MRI. [2] [3] The risk of silent stroke increases with age but may also affect younger adults. Women appear to be at increased risk for silent stroke, with hypertension and current cigarette smoking being amongst the predisposing factors. [2] [4]

Contents

These types of strokes include lacunar and other ischemic strokes and minor hemorrhages. They may also include leukoaraiosis (changes in the white matter of the brain): the white matter is more susceptible to vascular blockage due to reduced amount of blood vessels as compared to the cerebral cortex. These strokes are termed "silent" because they typically affect "silent" regions of the brain that do not cause a noticeable change in an afflicted person's motor functions such as contralateral paralysis, slurred speech, pain, or an alteration in the sense of touch. A silent stroke typically affects regions of the brain associated with various thought processes, mood regulation and cognitive functions and is a leading cause of vascular cognitive impairment and may also lead to a loss of urinary bladder control. [5] [6]

In the Cardiovascular Health Study, a population study conducted among 3,660 adults over the age of 65, 31% showed evidence of silent stroke in neuroimaging studies utilizing MRI. These individuals were unaware they had suffered a stroke. It is estimated that silent strokes are five times more common than symptomatic stroke. [7]

A silent stroke differs from a transient ischemic attack (TIA). In TIA symptoms of stroke are exhibited which may last from a few minutes to 24 hours before resolving. A TIA is a risk factor for having a major stroke and subsequent silent strokes in the future. [8]

Types

Risk factors

There are various individual risk factors associated with having a silent stroke. Many of these risk factors are the same as those associated with having a major symptomatic stroke.

Neuropsychological deficits

Individuals who have had silent strokes often have various neuropsychological deficits and have significant impairment in multiple areas of cognitive performance. [6] One study has shown an association between silent stroke and a history of memory loss and lower scores on tests of cognitive function. [38] In a second study, individuals who have a had a silent stroke scored lower on the mini–mental state examination (MMSE) and on Raven's Colored Progressive Matrices [39] —a test designed for children aged 5 through 11 years, mentally and physically [40] impaired individuals, and elderly people.

In children

Children who have suffered silent strokes often have a variety of neuropsychological deficits. [41] These deficits may include lowered I.Q., learning disabilities, and an inability to focus.

Silent strokes are the most common form of neurologic injury in children with sickle cell anemia, who may develop subtle neurocognitive deficits in the areas of attention and concentration, executive function, and visual-motor speed and coordination due to silent strokes which may not have been detected on physical examination. [42]

Major depression is a risk factor and also a consequence of silent brain infarction (SBI). Persons who present with symptoms of presenile and senile major depression showed a markedly higher incidence of SBI (65.9% and 93.7%). Individuals with major depression who have had an SBI present with more marked neurological deficits and more severe depressive symptoms than do those without SBI. [43]

Diagnosis

The diagnosis of a silent stroke is usually made as an incidental finding (by chance) of various neuroimaging techniques. Silent strokes may be detected by:

Prevention

Preventive measures that can be taken to avoid sustaining a silent stroke are the same as for stroke. Smoking cessation is the most immediate step that can be taken, with the effective management of hypertension the major medically treatable factor.

Sickle cell anemia

Transfusion therapy lowers the risk for a new silent stroke in children who have both abnormal cerebral artery blood flow velocity, as detected by transcranial Doppler, and previous silent infarct, even when the initial MRI showed no abnormality. A finding of elevated TCD ultrasonographic velocity warrants MRI of the brain, as those with both abnormalities who are not provided transfusion therapy are at higher risk for developing a new silent infarct or stroke than are those whose initial MRI showed no abnormality. [50] [51]

See also

Related Research Articles

A transient ischemic attack (TIA), commonly known as a mini-stroke, is a minor stroke whose noticeable symptoms usually end in less than an hour. TIA causes the same symptoms associated with strokes, such as weakness or numbness on one side of the body, sudden dimming or loss of vision, difficulty speaking or understanding language, slurred speech, or confusion.

Vascular dementia (VaD) is dementia caused by problems in the blood supply to the brain, resulting from a cerebrovascular disease. Restricted blood supply (ischemia) leads to cell and tissue death in the affected region, known as an infarct. The three types of vascular dementia are subcortical vascular dementia, multi-infarct dementia, and stroke related dementia. Subcortical vascular dementia is brought about by damage to the small blood vessels in the brain. Multi-infarct dementia is brought about by a series of mini-strokes where many regions have been affected. The third type is stroke related where more serious damage may result. Such damage leads to varying levels of cognitive decline. When caused by mini-strokes, the decline in cognition is gradual. When due to a stroke, the cognitive decline can be traced back to the event.

<span class="mw-page-title-main">Cerebrovascular disease</span> Condition that affects the arteries that supply the brain

Cerebrovascular disease includes a variety of medical conditions that affect the blood vessels of the brain and the cerebral circulation. Arteries supplying oxygen and nutrients to the brain are often damaged or deformed in these disorders. The most common presentation of cerebrovascular disease is an ischemic stroke or mini-stroke and sometimes a hemorrhagic stroke. Hypertension is the most important contributing risk factor for stroke and cerebrovascular diseases as it can change the structure of blood vessels and result in atherosclerosis. Atherosclerosis narrows blood vessels in the brain, resulting in decreased cerebral perfusion. Other risk factors that contribute to stroke include smoking and diabetes. Narrowed cerebral arteries can lead to ischemic stroke, but continually elevated blood pressure can also cause tearing of vessels, leading to a hemorrhagic stroke.

<span class="mw-page-title-main">Cerebral edema</span> Excess accumulation of fluid (edema) in the intracellular or extracellular spaces of the brain

Cerebral edema is excess accumulation of fluid (edema) in the intracellular or extracellular spaces of the brain. This typically causes impaired nerve function, increased pressure within the skull, and can eventually lead to direct compression of brain tissue and blood vessels. Symptoms vary based on the location and extent of edema and generally include headaches, nausea, vomiting, seizures, drowsiness, visual disturbances, dizziness, and in severe cases, death.

<span class="mw-page-title-main">Stroke</span> Death of a region of brain cells due to poor blood flow

Stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functioning properly.

<span class="mw-page-title-main">Cerebral hypoxia</span> Oxygen shortage of the brain

Cerebral hypoxia is a form of hypoxia, specifically involving the brain; when the brain is completely deprived of oxygen, it is called cerebral anoxia. There are four categories of cerebral hypoxia; they are, in order of increasing severity: diffuse cerebral hypoxia (DCH), focal cerebral ischemia, cerebral infarction, and global cerebral ischemia. Prolonged hypoxia induces neuronal cell death via apoptosis, resulting in a hypoxic brain injury.

<span class="mw-page-title-main">Intracerebral hemorrhage</span> Type of intracranial bleeding that occurs within the brain tissue itself

Intracerebral hemorrhage (ICH), also known as hemorrhagic stroke, is a sudden bleeding into the tissues of the brain, into its ventricles, or into both. An ICH is a type of bleeding within the skull and one kind of stroke. Symptoms can vary dramatically depending on the severity, acuity, and location (anatomically) but can include headache, one-sided weakness, numbness, tingling, or paralysis, speech problems, vision or hearing problems, memory loss, attention problems, coordination problems, balance problems, dizziness or lightheadedness or vertigo, nausea/vomiting, seizures, decreased level of consciousness or total loss of consciousness, neck stiffness, and fever.

<span class="mw-page-title-main">Cerebral infarction</span> Medical condition

Cerebral infarction is the pathologic process that results in an area of necrotic tissue in the brain. It is caused by disrupted blood supply (ischemia) and restricted oxygen supply (hypoxia), most commonly due to thromboembolism, and manifests clinically as ischemic stroke. In response to ischemia, the brain degenerates by the process of liquefactive necrosis.

<span class="mw-page-title-main">Watershed stroke</span> Medical condition

A watershed stroke is defined as a brain ischemia that is localized to the vulnerable border zones between the tissues supplied by the anterior, posterior and middle cerebral arteries. The actual blood stream blockage/restriction site can be located far away from the infarcts. Watershed locations are those border-zone regions in the brain supplied by the major cerebral arteries where blood supply is decreased. Watershed strokes are a concern because they comprise approximately 10% of all ischemic stroke cases. The watershed zones themselves are particularly susceptible to infarction from global ischemia as the distal nature of the vasculature predisposes these areas to be most sensitive to profound hypoperfusion.

<span class="mw-page-title-main">Brain ischemia</span> Medical condition

Brain ischemia is a condition in which there is insufficient bloodflow to the brain to meet metabolic demand. This leads to poor oxygen supply or cerebral hypoxia and thus leads to the death of brain tissue or cerebral infarction/ischemic stroke. It is a sub-type of stroke along with subarachnoid hemorrhage and intracerebral hemorrhage.

Animal models of ischemic stroke are procedures inducing cerebral ischemia. The aim is the study of basic processes or potential therapeutic interventions in this disease, and the extension of the pathophysiological knowledge on and/or the improvement of medical treatment of human ischemic stroke. Ischemic stroke has a complex pathophysiology involving the interplay of many different cells and tissues such as neurons, glia, endothelium, and the immune system. These events cannot be mimicked satisfactorily in vitro yet. Thus a large portion of stroke research is conducted on animals.

<span class="mw-page-title-main">Lacunar stroke</span> Medical condition

Lacunar stroke or lacunar cerebral infarct (LACI) is the most common type of ischemic stroke, resulting from the occlusion of small penetrating arteries that provide blood to the brain's deep structures. Patients who present with symptoms of a lacunar stroke, but who have not yet had diagnostic imaging performed, may be described as having lacunar stroke syndrome (LACS).

<span class="mw-page-title-main">Leukoaraiosis</span> Type of white matter abnormality near the lateral ventricles

Leukoaraiosis is a particular abnormal change in appearance of white matter near the lateral ventricles. It is often seen in aged individuals, but sometimes in young adults. On MRI, leukoaraiosis changes appear as white matter hyperintensities (WMHs) in T2 FLAIR images. On CT scans, leukoaraiosis appears as hypodense periventricular white-matter lesions.

<span class="mw-page-title-main">Cerebral venous sinus thrombosis</span> Presence of a blood clot in the dural venous sinuses or cerebral veins

Cerebral venous sinus thrombosis (CVST), cerebral venous and sinus thrombosis or cerebral venous thrombosis (CVT), is the presence of a blood clot in the dural venous sinuses, the cerebral veins, or both. Symptoms may include severe headache, visual symptoms, any of the symptoms of stroke such as weakness of the face and limbs on one side of the body, and seizures, which occur in around 40% of patients.

In pathology and anatomy the penumbra is the area surrounding an ischemic event such as thrombotic or embolic stroke. Immediately following the event, blood flow and therefore oxygen transport is reduced locally, leading to hypoxia of the cells near the location of the original insult. This can lead to hypoxic cell death (infarction) and amplify the original damage from the ischemia; however, the penumbra area may remain viable for several hours after an ischemic event due to the collateral arteries that supply the penumbral zone.

Remote ischemic conditioning (RIC) is an experimental medical procedure that aims to reduce the severity of ischaemic injury to an organ such as the heart or the brain, most commonly in the situation of a heart attack or a stroke, or during procedures such as heart surgery when the heart may temporary suffer ischaemia during the operation, by triggering the body's natural protection against tissue injury. Although noted to have some benefits in experimental models in animals, this is still an experimental procedure in humans and initial evidence from small studies have not been replicated in larger clinical trials. Successive clinical trials have failed to identify evidence supporting a protective role in humans.

A migrainous infarction is a rare type of ischaemic stroke which occurs in correspondence with migraine aura symptoms. Symptoms include headaches, visual disturbances, strange sensations and dysphasia, all of which gradually worsen causing neurological changes which ultimately increase the risk of an ischaemic stroke. Typically, women under the age of 45 who experience migraine with aura (MA) are at the greatest risk for developing migrainous infarction, especially when combined with smoking and use of oral contraceptives.

<span class="mw-page-title-main">Hypertension and the brain</span>

Hypertension is a condition characterized by an elevated blood pressure in which the long term consequences include cardiovascular disease, kidney disease, adrenal gland tumors, vision impairment, memory loss, metabolic syndrome, stroke and dementia. It affects nearly 1 in 2 Americans and remains as a contributing cause of death in the United States. There are many genetic and environmental factors involved with the development of hypertension including genetics, diet, and stress.

A cerebroprotectant is a drug that is intended to protect the brain after the onset of acute ischemic stroke. As stroke is the second largest cause of death worldwide and a leading cause of adult disability, over 150 drugs tested in clinical trials to provide cerebroprotection.

Hemorrhagic transformation (HT) or hemorrhagic conversion is a medical complication that can occur in the brain following an acute ischemic stroke, a condition in which blood flow to the brain is blocked.

References

  1. Miwa, K; Hoshi, T; Hougaku, H; Tanaka, Makiko; Furukado, Shigetaka; Abe, Yuko; Okazaki, Shuhei; Sakaguchi, Manabu; et al. (2010). "Silent cerebral infarction is associated with incident stroke and TIA independent of carotid intima-media thickness". Internal Medicine (Tokyo, Japan). 49 (9): 817–22. doi: 10.2169/internalmedicine.49.3211 . PMID   20453400.
  2. 1 2 Herderscheê, D; Hijdra, A; Algra, A; Koudstaal, PJ; Kappelle, LJ; Van Gijn, J (1992). "Silent stroke in patients with transient ischemic attack or minor ischemic stroke. The Dutch TIA Trial Study Group". Stroke: A Journal of Cerebral Circulation. 23 (9): 1220–4. doi: 10.1161/01.STR.23.9.1220 . PMID   1519274.
  3. Leary, MC; Saver, JL (2003). "Annual incidence of first silent stroke in the United States: A preliminary estimate". Cerebrovascular Diseases. 16 (3): 280–5. doi:10.1159/000071128. PMID   12865617. S2CID   33095581.
  4. Vermeer, SE; Koudstaal, PJ; Oudkerk, M; Hofman, A; Breteler, MM (2002). "Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study". Stroke: A Journal of Cerebral Circulation. 33 (1): 21–5. doi: 10.1161/hs0102.101629 . PMID   11779883.
  5. Yatsu, FM; Shaltoni, HM (2004). "Implications of silent strokes". Current Atherosclerosis Reports. 6 (4): 307–13. doi:10.1007/s11883-004-0063-0. PMID   15191706. S2CID   19688830.
  6. 1 2 Schmidt, WP; Roesler, A; Kretzschmar, K; Ladwig, KH; Junker, R; Berger, K (2004). "Functional and cognitive consequences of silent stroke discovered using brain magnetic resonance imaging in an elderly population". Journal of the American Geriatrics Society. 52 (7): 1045–50. doi: 10.1111/j.1532-5415.2004.52300.x . PMID   15209640. S2CID   19351339.
  7. Fried, LP; Borhani, NO; Enright, P; Furberg, CD; Gardin, JM; Kronmal, RA; Kuller, LH; Manolio, TA; et al. (1991). "The Cardiovascular Health Study: Design and rationale". Annals of Epidemiology. 1 (3): 263–76. doi:10.1016/1047-2797(91)90005-W. PMID   1669507.
  8. Coutts, SB; Hill, MD; Simon, JE; Sohn, CH; Scott, JN; Demchuk, AM; Vision Study, Group (2005). "Silent ischemia in minor stroke and TIA patients identified on MR imaging". Neurology. 65 (4): 513–7. doi:10.1212/01.WNL.0000169031.39264.ff. PMID   16116107. S2CID   24762370.
  9. Van Zagten, M; Boiten, J; Kessels, F; Lodder, J (1996). "Significant progression of white matter lesions and small deep (lacunar) infarcts in patients with stroke". Archives of Neurology. 53 (7): 650–5. doi:10.1001/archneur.1996.00550070088015. PMID   8929172.
  10. Igarashi, K; Kashiwagi, K (2011). "Use of Polyamine Metabolites as Markers for Stroke and Renal Failure". Polyamines. Methods in Molecular Biology. Vol. 720. pp. 395–408. doi:10.1007/978-1-61779-034-8_25. ISBN   978-1-61779-033-1. PMID   21318888.
  11. Tomitori, H; Usui, T; Saeki, N; Ueda, S; Kase, H; Nishimura, K; Kashiwagi, K; Igarashi, K (2005). "Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke". Stroke: A Journal of Cerebral Circulation. 36 (12): 2609–13. doi: 10.1161/01.STR.0000190004.36793.2d . PMID   16269634.
  12. Bang, OY; Saver, JL; Ovbiagele, B; Choi, YJ; Yoon, SR; Lee, KH (2007). "Adiponectin levels in patients with intracranial atherosclerosis". Neurology. 68 (22): 1931–7. doi:10.1212/01.wnl.0000263186.20988.9f. PMID   17536050. S2CID   41415046.
  13. Lim, JS; Kwon, HM (2010). "Risk of "silent stroke" in patients older than 60 years: Risk assessment and clinical perspectives". Clinical Interventions in Aging. 5: 239–51. doi: 10.2147/cia.s7382 . PMC   2938031 . PMID   20852671.
  14. Dowling, Michael M.; Quinn, Charles T.; Rogers, Zora R.; Buchanan, George R. (2010). "Acute silent cerebral infarction in children with sickle cell anemia". Pediatric Blood & Cancer. 54 (3): 461–4. doi:10.1002/pbc.22242. PMC   2807470 . PMID   19813251.
  15. Adams, RJ (2007). "Big strokes in small persons". Archives of Neurology. 64 (11): 1567–74. doi: 10.1001/archneur.64.11.1567 . PMID   17998439.
  16. Bernaudin, F; Verlhac, S; Fréard, F; Roudot-Thoraval, F; Benkerrou, M; Thuret, I; Mardini, R; Vannier, JP; et al. (2000). "Multicenter prospective study of children with sickle cell disease: Radiographic and psychometric correlation". Journal of Child Neurology. 15 (5): 333–43. doi:10.1177/088307380001500510. PMID   10830200. S2CID   25470082.
  17. Adams, RJ; Ohene-Frempong, K; Wang, W (2001). "Sickle cell and the brain". Hematology. 2001: 31–46. doi: 10.1182/asheducation-2001.1.31 . PMID   11722977.
  18. King, AA; Debaun, MR; White, DA (2008). "Need for cognitive rehabilitation for children with sickle cell disease and strokes". Expert Review of Neurotherapeutics. 8 (2): 291–6. doi:10.1586/14737175.8.2.291. PMID   18271713. S2CID   43723218.
  19. Caksen, H; Odabaş, D; Akbayram, S; Faik Oner, A; Arslan, S; Cesur, Y; Uner, A (2003). "Silent stroke in a case of beta-thalassemia major associated with chronic renal failure and diabetes mellitus". Journal of Child Neurology. 18 (11): 798–800. doi:10.1177/08830738030180110201. PMID   14696909. S2CID   28433612.
  20. Kalantarian S, Ay H, Gollub RL, Lee H, Retzepi K, Mansour M, Ruskin JN (4 Nov 2014). "Association Between Atrial Fibrillation and Silent Cerebral Infarctions: A Systematic Review and Meta-analysis". Ann Intern Med. 161 (9): 650–8. doi:10.7326/M14-0538. PMC   5578742 . PMID   25364886.
  21. Li, M; Yu, D; Williams, KJ; Liu, ML (2010). "Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages". Arteriosclerosis, Thrombosis, and Vascular Biology. 30 (9): 1818–24. doi:10.1161/ATVBAHA.110.209577. PMC   2939448 . PMID   20558816.
  22. Mazzone, P; Tierney, W; Hossain, M; Puvenna, V; Janigro, D; Cucullo, L (2010). "Pathophysiological impact of cigarette smoke exposure on the cerebrovascular system with a focus on the blood–brain barrier: Expanding the awareness of smoking toxicity in an underappreciated area". International Journal of Environmental Research and Public Health. 7 (12): 4111–26. doi: 10.3390/ijerph7124111 . PMC   3037043 . PMID   21317997.
  23. Lind, L; Sarabi, M; Millgård, J (2003). "The effect of smoking on endothelial vasodilatory function evaluated by local infusion of metacholine in the forearm is dependent on the duration of smoking". Nicotine & Tobacco Research. 5 (1): 125–30. doi:10.1080/1462220031000070516. PMID   12745514.
  24. Kubota, K; Yamaguchi, T; Abe, Y; Fujiwara, T; Hatazawa, J; Matsuzawa, T (1983). "Effects of smoking on regional cerebral blood flow in neurologically normal subjects". Stroke: A Journal of Cerebral Circulation. 14 (5): 720–4. doi: 10.1161/01.STR.14.5.720 . PMID   6658956.
  25. Love, BB; Biller, J; Jones, MP; Adams Jr, HP; Bruno, A (1990). "Cigarette smoking. A risk factor for cerebral infarction in young adults". Archives of Neurology. 47 (6): 693–8. doi:10.1001/archneur.1990.00530060107027. PMID   2189378.
  26. Ridker PM, Libby P (2007). "Risk Factors for Atherothrombotic Disease". In Libby P, Bonow RO, Mann DL, Zipes DP (eds.). Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine (8th ed.). Philadelphia: Saunders Elsevier. pp. 939–.
  27. Yoshida, M; Tomitori, H; Machi, Y; Katagiri, D; Ueda, S; Horiguchi, K; Kobayashi, E; Saeki, N; et al. (2009). "Acrolein, IL-6 and CRP as markers of silent brain infarction". Atherosclerosis. 203 (2): 557–62. doi:10.1016/j.atherosclerosis.2008.07.022. PMID   18757054.
  28. Roberts, RO; Kantarci, K; Geda, YE; Knopman, DS; Przybelski, SA; Weigand, SD; Petersen, RC; Jack Jr, CR (2011). "Untreated type 2 diabetes and its complications are associated with subcortical infarctions". Diabetes Care. 34 (1): 184–6. doi:10.2337/dc10-0602. PMC   3005470 . PMID   20980413.
  29. Chen, X; Wen, W; Anstey, KJ; Sachdev, PS (2009). "Prevalence, incidence, and risk factors of lacunar infarcts in a community sample". Neurology. 73 (4): 266–72. doi:10.1212/WNL.0b013e3181aa52ea. PMID   19636046. S2CID   25658551.
  30. Vermeer, SE; Van Dijk, EJ; Koudstaal, PJ; Oudkerk, M; Hofman, A; Clarke, R; Breteler, MM (2002). "Homocysteine, silent brain infarcts, and white matter lesions: The Rotterdam Scan Study". Annals of Neurology. 51 (3): 285–9. doi:10.1002/ana.10111. PMID   11891822. S2CID   7860349.
  31. Seshadri, S; Wolf, PA; Beiser, AS; Selhub, J; Au, R; Jacques, PF; Yoshita, M; Rosenberg, IH; et al. (2008). "Association of plasma total homocysteine levels with subclinical brain injury: Cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study". Archives of Neurology. 65 (5): 642–9. doi:10.1001/archneur.65.5.642. PMC   2700952 . PMID   18474741.
  32. Matsui, T; Arai, H; Yuzuriha, T; Yao, H; Miura, M; Hashimoto, S; Higuchi, S; Matsushita, S; et al. (2001). "Elevated plasma homocysteine levels and risk of silent brain infarction in elderly people". Stroke: A Journal of Cerebral Circulation. 32 (5): 1116–9. doi: 10.1161/01.STR.32.5.1116 . PMID   11340219.
  33. Bokura, H; Yamaguchi, S; Iijima, K; Nagai, A; Oguro, H (2008). "Metabolic syndrome is associated with silent ischemic brain lesions". Stroke: A Journal of Cerebral Circulation. 39 (5): 1607–9. doi: 10.1161/STROKEAHA.107.508630 . PMID   18323475.
  34. Kwon, HM; Kim, BJ; Park, JH; Ryu, WS; Kim, CK; Lee, SH; Ko, SB; Nam, H; et al. (2009). "Significant association of metabolic syndrome with silent brain infarction in elderly people". Journal of Neurology. 256 (11): 1825–31. doi:10.1007/s00415-009-5201-8. PMID   19533202. S2CID   28634392.
  35. De Groot, PC; Dekkers, OM; Romijn, JA; Dieben, SW; Helmerhorst, FM (2011). "PCOS, coronary heart disease, stroke and the influence of obesity: A systematic review and meta-analysis". Human Reproduction Update. 17 (4): 495–500. doi: 10.1093/humupd/dmr001 . PMID   21335359.
  36. Chokroverty S (February 2010). "Overview of sleep & sleep disorders". Indian J. Med. Res. 131: 126–40. PMID   20308738.
  37. American Stroke Association Meeting Report - Abstract 3434/P161: Sleep apnea linked to silent strokes, small lesions in brain "Sleep apnea linked to silent strokes, small lesions in brain / American Heart Association". Archived from the original on 2012-02-11. Retrieved 2012-02-05.
  38. Price TR, Manolio TA, Kronmal RA, et al. (June 1997). "Silent brain infarction on magnetic resonance imaging and neurological abnormalities in community-dwelling older adults. The Cardiovascular Health Study. CHS Collaborative Research Group". Stroke. 28 (6): 1158–64. doi:10.1161/01.STR.28.6.1158. PMID   9183343.
  39. Maeshima S, Moriwaki H, Ozaki F, Okita R, Yamaga H, Ueyoshi A (March 2002). "Silent cerebral infarction and cognitive function in middle-aged neurologically healthy subjects". Acta Neurol. Scand. 105 (3): 179–84. doi: 10.1034/j.1600-0404.2002.1o068.x . PMID   11886361. S2CID   40398490.
  40. Pueyo R, Junqué C, Vendrell P, Narberhaus A, Segarra D (May 2008). "Raven's Coloured Progressive Matrices as a measure of cognitive functioning in Cerebral Palsy". Journal of Intellectual Disability Research. 52 (Pt 5): 437–45. doi:10.1111/j.1365-2788.2008.01045.x. PMID   18312310.
  41. Sam Goldstein, Cecil R. Reynolds: Handbook of Neurodevelopmental and Genetic Disorders in Children p.105 (2010) ISBN   1-60623-990-2
  42. Kral MC, Brown RT, Hynd GW (December 2001). "Neuropsychological aspects of pediatric sickle cell disease". Neuropsychol Rev. 11 (4): 179–96. doi:10.1023/A:1012901124088. PMID   11883668. S2CID   10970844.
  43. Fujikawa, T; Yamawaki, S; Touhouda, Y (1994). "Background factors and clinical symptoms of major depression with silent cerebral infarction". Stroke: A Journal of Cerebral Circulation. 25 (4): 798–801. doi: 10.1161/01.STR.25.4.798 . PMID   8160223.
  44. Price, TR; Manolio, TA; Kronmal, RA; Kittner, SJ; Yue, NC; Robbins, J; Anton-Culver, H; O'Leary, DH (1997). "Silent brain infarction on magnetic resonance imaging and neurological abnormalities in community-dwelling older adults. The Cardiovascular Health Study. CHS Collaborative Research Group". Stroke: A Journal of Cerebral Circulation. 28 (6): 1158–64. doi:10.1161/01.STR.28.6.1158. PMID   9183343.
  45. Vermeer, SE; Longstreth Jr, WT; Koudstaal, PJ (2007). "Silent brain infarcts: A systematic review". Lancet Neurology. 6 (7): 611–9. doi:10.1016/S1474-4422(07)70170-9. PMID   17582361. S2CID   11286803.
  46. Corea, F; Tambasco, N; Luccioli, R; Ciorba, E; Parnetti, L; Gallai, V (2002). "Brain CT-scan in acute stroke patients: Silent infarcts and relation to outcome". Clinical and Experimental Hypertension. 24 (7–8): 669–76. doi:10.1081/CEH-120015343. PMID   12450242. S2CID   5972382.
  47. Boon, A; Lodder, J; Heuts-Van Raak, L; Kessels, F (1994). "Silent brain infarcts in 755 consecutive patients with a first-ever supratentorial ischemic stroke. Relationship with index-stroke subtype, vascular risk factors, and mortality". Stroke: A Journal of Cerebral Circulation. 25 (12): 2384–90. doi: 10.1161/01.STR.25.12.2384 . PMID   7974577.
  48. Ong, CT; Chen, WP; Sung, SF; Wu, CS; Hsu, YC (2007). "Silent infarction in patients with first-ever stroke". Acta Neurologica Taiwanica. 16 (4): 221–5. PMID   18220015.
  49. Adams, R; McKie, V; Nichols, F; Carl, E; Zhang, DL; McKie, K; Figueroa, R; Litaker, M; et al. (1992). "The use of transcranial ultrasonography to predict stroke in sickle cell disease". The New England Journal of Medicine. 326 (9): 605–10. doi: 10.1056/NEJM199202273260905 . PMID   1734251.
  50. Pegelow, CH; Wang, W; Granger, S; Hsu, LL; Vichinsky, E; Moser, FG; Bello, J; Zimmerman, RA; et al. (2001). "Silent infarcts in children with sickle cell anemia and abnormal cerebral artery velocity". Archives of Neurology. 58 (12): 2017–21. doi: 10.1001/archneur.58.12.2017 . PMID   11735775.
  51. Lee, MT; Piomelli, S; Granger, S; Miller, ST; Harkness, S; Brambilla, DJ; Adams, RJ; Stop Study, Investigators (2006). "Stroke Prevention Trial in Sickle Cell Anemia (STOP): Extended follow-up and final results". Blood. 108 (3): 847–52. doi:10.1182/blood-2005-10-009506. PMC   1895848 . PMID   16861341.