Sine and cosine transforms

Last updated
The sine and cosine transforms convert a function into a frequency domain representation as a sum of sine and cosine waves. The inverse transform converts back to a time or spatial domain. Sine and cosine transforms with inversion equations together.svg
The sine and cosine transforms convert a function into a frequency domain representation as a sum of sine and cosine waves. The inverse transform converts back to a time or spatial domain.

In mathematics, the Fourier sine and cosine transforms are integral equations that decompose arbitrary functions into a sum of sine waves representing the odd component of the function plus cosine waves representing the even component of the function. The modern Fourier transform concisely contains both the sine and cosine transforms. Since the sine and cosine transforms use sine and cosine waves instead of complex exponentials and don't require complex numbers or negative frequency, they more closely correspond to Joseph Fourier's original transform equations and are still preferred in some signal processing and statistics applications and may be better suited as an introduction to Fourier analysis.

Contents

Definition

Fourier transforms relate a time-domain function (red) to a frequency-domain function (blue). Sine or cosine waves that make up the original function will appear as peaks in the frequency domain functions produced by the sine or cosine transform, respectively. Fourier transform time and frequency domains (small).gif
Fourier transforms relate a time-domain function (red) to a frequency-domain function (blue). Sine or cosine waves that make up the original function will appear as peaks in the frequency domain functions produced by the sine or cosine transform, respectively.

The Fourier sine transform of is: [note 1]

Fourier sine transform

If means time, then is frequency in cycles per unit time, [note 2] but in the abstract, they can be any dual pair of variables (e.g. position and spatial frequency).

The sine transform is necessarily an odd function of frequency, i.e. for all :

The cosine transform of a simple rectangular function (of height
1
a
{\displaystyle {\tfrac {1}{a}}}
and width
a
{\displaystyle a}
) is the normalized sinc
(
a
x
)
{\displaystyle (a\xi )}
plotted above. Sinc-ax.svg
The cosine transform of a simple rectangular function (of height and width ) is the normalized sinc plotted above.


The Fourier cosine transform of is: [note 3]

Fourier cosine transform

The cosine transform is necessarily an even function of frequency, i.e. for all :

Odd and even simplification

Like all even functions, the left half of a Gaussian function is a mirror image of its right half and its sine transform is entirely 0. Gaussians have the form
e
-
a
t
2
{\displaystyle e^{-\alpha t^{2}}}
and their cosine transform:

f
^
c
(
x
)
=
p
a
e
-
(
p
x
)
2
a
{\displaystyle {\hat {f}}^{c}(\xi )={\sqrt {\tfrac {\pi }{\alpha }}}\,e^{-{\frac {(\pi \xi )^{2}}{\alpha }}}}

also is a Gaussian. The plotted Gaussian uses a=p and is its own cosine transform. Gaussian that is own cosine transform alpha-is-pi.png
Like all even functions, the left half of a Gaussian function is a mirror image of its right half and its sine transform is entirely 0. Gaussians have the form and their cosine transform:

also is a Gaussian. The plotted Gaussian uses α=π and is its own cosine transform.

The multiplication rules for even and odd functions shown in the overbraces in the following equations dramatically simplify the integrands when transforming even and odd functions. Some authors [1] even only define the cosine transform for even functions . Since cosine is an even function and because the integral of an even function from to is twice its integral from to , the cosine transform of any even function can be simplified to avoid negative :

And because the integral from to of any odd function from is zero, the cosine transform of any odd function is simply zero:

Odd functions are unchanged if rotated 180 degrees about the origin. Their cosine transform is entirely zero. The above odd function contains two half-sized time-shifted Dirac delta functions. Its sine transform is simply
sin
[?]
(
a
x
)
.
{\displaystyle \sin(a\xi ).}
Likewise, the sine transform of
sin
[?]
(
a
x
)
{\displaystyle \sin(a\xi )}
is the above plot. Thus, the sine wave function and the time-shifted Dirac delta function form a transform pair. Sine-transform-of-sine-of-ax-is-two-odd-symmetrical-Dirac-deltas.png
Odd functions are unchanged if rotated 180 degrees about the origin. Their cosine transform is entirely zero. The above odd function contains two half-sized time-shifted Dirac delta functions. Its sine transform is simply Likewise, the sine transform of is the above plot. Thus, the sine wave function and the time-shifted Dirac delta function form a transform pair.

Similarly, because sin is odd, the sine transform of any odd function also simplifies to avoid negative :

and the sine transform of any even function is simply zero:

The sine transform represents the odd part of a function, while the cosine transform represents the even part of a function.

Other conventions

Just like the Fourier transform takes the form of different equations with different constant factors (see Fourier transform § Unitarity and definition for square integrable functions for discussion), other authors also define the cosine transform as [2] and the sine transform as Another convention defines the cosine transform as [3] and the sine transform as using as the transformation variable. And while is typically used to represent the time domain, is often instead used to represent a spatial domain when transforming to spatial frequencies.

Fourier inversion

The original function can be recovered from its sine and cosine transforms under the usual hypotheses [note 4] using the inversion formula: [4]

Fourier inversion (from the sine and cosine transforms)

Simplifications

Note that since both integrands are even functions of , the concept of negative frequency can be avoided by doubling the result of integrating over non-negative frequencies:

Also, if is an odd function, then the cosine transform is zero, so its inversion simplifies to:

Likewise, if the original function is an even function, then the sine transform is zero, so its inversion also simplifies to:

Remarkably, these last two simplified inversion formulas look identical to the original sine and cosine transforms, respectively, though with swapped with (and with swapped with or ). A consequence of this symmetry is that their inversion and transform processes still work when the two functions are swapped. Two such functions are called transform pairs. [note 5]

Overview of inversion proof

Using the addition formula for cosine, the full inversion formula can also be rewritten as Fourier's integral formula: [5] [6] This theorem is often stated under different hypotheses, that is integrable, and is of bounded variation on an open interval containing the point , in which case

This latter form is a useful intermediate step in proving the inverse formulae for the since and cosine transforms. One method of deriving it, due to Cauchy is to insert a into the integral, where is fixed. Then Now when , the integrand tends to zero except at , so that formally the above is

Relation with complex exponentials

The complex exponential form of the Fourier transform used more often today is [7] where is the square root of negative one. By applying Euler's formula it can be shown (for real-valued functions) that the Fourier transform's real component is the cosine transform (representing the even component of the original function) and the Fourier transform's imaginary component is the negative of the sine transform (representing the odd component of the original function): [8] Because of this relationship, the cosine transform of functions whose Fourier transform is known (e.g. in Fourier transform § Tables of important Fourier transforms) can be simply found by taking the real part of the Fourier transform:while the sine transform is simply the negative of the imaginary part of the Fourier transform:

Pros and cons

Adding a sine wave (red) and a cosine wave (blue) of the same frequency results a phase-shifted sine wave (green) of that same frequency, but whose amplitude and phase depends on the amplitudes of the original sine and cosine wave. Hence, at a particular frequency, the sine transform and the cosine transform together essentially only represent one sine wave that could have any phase shift. Sine cosine and the sum over one period.svg
Adding a sine wave (red) and a cosine wave (blue) of the same frequency results a phase-shifted sine wave (green) of that same frequency, but whose amplitude and phase depends on the amplitudes of the original sine and cosine wave. Hence, at a particular frequency, the sine transform and the cosine transform together essentially only represent one sine wave that could have any phase shift.

An advantage of the modern Fourier transform is that while the sine and cosine transforms together are required to extract the phase information of a frequency, the modern Fourier transform instead compactly packs both phase and amplitude information inside its complex valued result. But a disadvantage is its requirement on understanding complex numbers, complex exponentials, and negative frequency.

The sine and cosine transforms meanwhile have the advantage that all quantities are real. Since positive frequencies can fully express them, the non-trivial concept of negative frequency needed in the regular Fourier transform can be avoided. They may also be convenient when the original function is already even or odd or can be made even or odd, in which case only the cosine or the sine transform respectively is needed. For instance, even though an input may not be even or odd, a discrete cosine transform may start by assuming an even extension of its input while a discrete sine transform may start by assuming an odd extension of its input, to avoid having to compute the entire discrete Fourier transform.

Numerical evaluation

Using standard methods of numerical evaluation for Fourier integrals, such as Gaussian or tanh-sinh quadrature, is likely to lead to completely incorrect results, as the quadrature sum is (for most integrands of interest) highly ill-conditioned. Special numerical methods which exploit the structure of the oscillation are required, an example of which is Ooura's method for Fourier integrals [9] This method attempts to evaluate the integrand at locations which asymptotically approach the zeros of the oscillation (either the sine or cosine), quickly reducing the magnitude of positive and negative terms which are summed.

See also

Notes

  1. The sine transform is sometimes denoted with instead of .
  2. While this article uses ordinary frequency for in cycles per unit time, which typically uses the Hertz and the second as units, these transforms are sometimes expressed using angular frequency in angular units (e.g. radians) per unit time, where   radians per second equals .
  3. The cosine transform is sometimes denoted with instead of .
  4. The usual hypotheses are that and both of its transforms should be absolutely integrable. For more details on the different hypotheses, see Fourier inversion theorem.
  5. The more general modern Fourier transform has this symmetry even when the original functions aren't even or odd. A notation to denote Fourier transform pairs is

Related Research Articles

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation; it is indeed derived using the product rule.

In mathematics, the Fourier inversion theorem says that for many types of functions it is possible to recover a function from its Fourier transform. Intuitively it may be viewed as the statement that if we know all frequency and phase information about a wave then we may reconstruct the original wave precisely.

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

In mathematics, the Hartley transform (HT) is an integral transform closely related to the Fourier transform (FT), but which transforms real-valued functions to real-valued functions. It was proposed as an alternative to the Fourier transform by Ralph V. L. Hartley in 1942, and is one of many known Fourier-related transforms. Compared to the Fourier transform, the Hartley transform has the advantages of transforming real functions to real functions and of being its own inverse.

<span class="mw-page-title-main">Sinc function</span> Special mathematical function defined as sin(x)/x

In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.

In Fourier analysis, a multiplier operator is a type of linear operator, or transformation of functions. These operators act on a function by altering its Fourier transform. Specifically they multiply the Fourier transform of a function by a specified function known as the multiplier or symbol. Occasionally, the term multiplier operator itself is shortened simply to multiplier. In simple terms, the multiplier reshapes the frequencies involved in any function. This class of operators turns out to be broad: general theory shows that a translation-invariant operator on a group which obeys some regularity conditions can be expressed as a multiplier operator, and conversely. Many familiar operators, such as translations and differentiation, are multiplier operators, although there are many more complicated examples such as the Hilbert transform.

<span class="mw-page-title-main">Negative frequency</span>

In mathematics, the concept of signed frequency can indicate both the rate and sense of rotation; it can be as simple as a wheel rotating clockwise or counterclockwise. The rate is expressed in units such as revolutions per second (hertz) or radian/second.

In mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.

In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis.

In mathematics, a half range Fourier series is a Fourier series defined on an interval instead of the more common , with the implication that the analyzed function should be extended to as either an even or odd function. This allows the expansion of the function in a series solely of sines (odd) or cosines (even). The choice between odd and even is typically motivated by boundary conditions associated with a differential equation satisfied by .

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

In mathematics, particularly the field of calculus and Fourier analysis, the Fourier sine and cosine series are two mathematical series named after Joseph Fourier.

<span class="mw-page-title-main">Dirichlet kernel</span> Concept in mathematical analysis

In mathematical analysis, the Dirichlet kernel, named after the German mathematician Peter Gustav Lejeune Dirichlet, is the collection of periodic functions defined as

Multiresolution Fourier Transform is an integral fourier transform that represents a specific wavelet-like transform with a fully scalable modulated window, but not all possible translations.

In mathematics, Cauchy wavelets are a family of continuous wavelets, used in the continuous wavelet transform.

References

  1. Mary L. Boas, Mathematical Methods in the Physical Sciences , 2nd Ed, John Wiley & Sons Inc, 1983. ISBN   0-471-04409-1
  2. Nyack, Cuthbert (1996). "Fourier Transform, Cosine and Sine Transforms". cnyack.homestead.com. Archived from the original on 2023-06-07. Retrieved 2018-10-08.
  3. Coleman, Matthew P. (2013). An Introduction to Partial Differential Equations with MATLAB (Second ed.). Boca Raton. p. 221. ISBN   978-1-4398-9846-8. OCLC   822959644.{{cite book}}: CS1 maint: location missing publisher (link)
  4. Poincaré, Henri (1895). Theorie analytique de la propagation de la chaleur. Paris: G. Carré. pp. 108ff.
  5. Edwin Titchmarsh (1948), Introduction to the theory of the Fourier integral, Oxford at the Clarendon Press, p. 1
  6. Whittaker, Edmund Taylor; Watson, George Neville (1927-01-02). A Course Of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions (4th ed.). Cambridge, UK: Cambridge University Press. p. 189. ISBN   0-521-06794-4. ISBN   978-0-521-06794-2.
  7. Valentinuzzi, Max E. (2016-01-25). "Highlights in the History of the Fourier Transform". IEEE Pulse . Archived from the original on 2024-05-15. Retrieved 2024-09-09.
  8. Williams, Lance R. (2011-09-06). "Even and odd functions" (PDF). www.cs.unm.edu/~williams/. Archived (PDF) from the original on 2024-05-02. Retrieved 2024-09-11.
  9. Takuya Ooura, Masatake Mori, A robust double exponential formula for Fourier-type integrals, Journal of computational and applied mathematics 112.1-2 (1999): 229-241.