slit | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Organism | |||||||
Symbol | sli | ||||||
Entrez | 36746 | ||||||
RefSeq (mRNA) | NM_057381.3 | ||||||
RefSeq (Prot) | NP_476729.1 | ||||||
UniProt | P24014 | ||||||
Other data | |||||||
Chromosome | 2R: 11.75 - 11.82 Mb | ||||||
|
slit homolog 1 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | SLIT1 | ||||||
Alt. symbols | SLIL1 | ||||||
NCBI gene | 6585 | ||||||
HGNC | 11085 | ||||||
OMIM | 603742 | ||||||
RefSeq | NM_003061 | ||||||
UniProt | O75093 | ||||||
Other data | |||||||
Locus | Chr. 10 q23.3-q24 | ||||||
|
slit homolog 2 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | SLIT2 | ||||||
Alt. symbols | SLIL3 | ||||||
NCBI gene | 9353 | ||||||
HGNC | 11086 | ||||||
OMIM | 603746 | ||||||
RefSeq | NM_004787 | ||||||
UniProt | O94813 | ||||||
Other data | |||||||
Locus | Chr. 4 p15.2 | ||||||
|
slit homolog 3 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | SLIT3 | ||||||
Alt. symbols | SLIL2 | ||||||
NCBI gene | 6586 | ||||||
HGNC | 11087 | ||||||
OMIM | 603745 | ||||||
RefSeq | NM_003062 | ||||||
UniProt | O75094 | ||||||
Other data | |||||||
Locus | Chr. 5 q35 | ||||||
|
Slit is a family of secreted extracellular matrix proteins which play an important signalling role in the neural development of most bilaterians (animals with bilateral symmetry). While lower animal species, including insects and nematode worms, possess a single Slit gene, humans, mice and other vertebrates possess three Slit homologs: Slit1, Slit2 and Slit3. Human Slits have been shown to be involved in certain pathological conditions, such as cancer and inflammation. [1]
The ventral midline of the central nervous system is a key place where axons can either decide to cross and laterally project or stay on the same side of the brain. [2] The main function of Slit proteins is to act as midline repellents, preventing the crossing of longitudinal axons through the midline of the central nervous system of most bilaterian animal species, including mice, chickens, humans, insects, nematode worms and planarians. [3] It also prevents the recrossing of commissural axons. Its canonical receptor is Robo but it may have other receptors. The Slit protein is produced and secreted by cells within the floor plate (in vertebrates) or by midline glia (in insects) and diffuses outward. Slit/Robo signaling is important in pioneer axon guidance. [4]
Slit mutations were first discovered in the Nuesslein-Volhard/Wieschaus patterning screen where they were seen to affect the external midline structures in the embryos of Drosophila melanogaster , also known as the common fruit fly. In this experiment, researchers screened for different mutations in D. melanogaster embryos that affected the neural development of axons in the central nervous system. They found that the mutations in commissureless genes (Slit genes) lead to the growth cones that typically cross the midline remaining on their own side. The findings from this screening suggest that Slit genes are responsible for repulsive signaling along the neuronal midline. [5]
Slit1, Slit2, and Slit3 each have the same basic structure. A major identifying feature of the Slit protein is the four leucine-rich repeat (LRR) domains and the N-terminus. Slits are one of only two protein families that contain multiple LRR domains. These LRRs are followed by six repeats similar to epidermal growth factors (EGF) as well as a β-sandwich domain similar to laminin G. Directly after these sequences, invertebrates have one EGF repeat, whereas vertebrates have three EGF repeats. In each case, the EGF is followed by a C-terminal cystine knot (CT) domain. [6]
It is possible for Slits to be cleaved into fragments of the N-terminus and C-terminus as a result of an assumed proteolytic site between the fifth and sixth EGFs in Drosophila Slit, Caenorhabditis elegans Slit, rat Slit1, rat Slit3 and human Slit2. [7]
Slit LRR domains are thought to assist in controlling neurite outgrowth. The domains consist of five to seven LRRs each with disulfide-rich cap segments. Each LRR motif contains a LXXLXLXXN sequence (where L = leucine, N = asparagine, X = any amino acid) which is one strand to a parallel β-sheet on the concave face of the LRR domain, while the back side of the domain consists of irregular loops. Each of the four domains of Slit are connected by short "linkers" which attach to the domains via a disulfide bridge, allowing the LRR region of Slit to remain very compact. [6]
Slit1, Slit2, and Slit3 are all a human homologs of the 'Slit' gene found in Drosophila. Each of these genes secretes a protein containing protein-protein interaction regions with leucine-rich repeats and EFGs. Slit2 is mainly expressed in the spinal cord, where it repels motor axons. Slit1 functions in the brain, and Slit3 in the thyroid. Both Slit1 and Slit2 are found in the murine postnatal septum as well as in the neocortex. Further, Slit2 participates in inhibiting leukocyte chemotaxis. In rats, Slit1 was found in the neurons of adult and fetal forebrains. This shows that Slit proteins in mammals most likely contribute to the process of forming and maintaining the endocrine and nervous systems through interactions between proteins. [8] Slit3 is primarily expressed in the thyroid, in human umbilical vein endothelial cells (HUVECs), as well as in endothelial cells from the lung and diaphragm of the mouse. Slit3 interacts with Robo1 and Robo4. [9]
Guidance molecules act as cues by carrying information to receptive cells; administering this information which tells the cell and its entities how to properly align. [10] Slit proteins behave as such when working in axonal guidance during the development of the nervous system. Similarly, these proteins help to orchestrate the development of various networks of tissues throughout the body. This role, also described as cell migration, is the primary role of Slit when interacting with Robo. It is most commonly found acting in neurons, endothelial cells and cancer cells. [10]
Chemorepellents help to direct growing axons toward the correct regions by directing them away from inappropriate regions. Slit genes, as well as their roundabout receptors, act as chemorepellents by helping prevent the wrong types of axons from crossing the midline of the central nervous system during establishment or remodeling of the neural circuits. The binding of Slit to any member of the Roundabout receptor family results in axon repelling through changes in the axon growth cone. The resulting repelling of axons is collectively termed as axonal guidance. Slit1 and Slit2 have both been seen to collapse and repel olfactory axons. Further evidence suggests that Slit also directs interneurons, particularly acting in the cortex. [11] Positive effects are also correlated with slits. Slit2 begins the formation of axon branches through neural growth factor genes of the dorsal root ganglia.
Several studies have shown that the interaction of Slit with its receptors is crucial in regulating the processes involved with the formation of organs. As previously discussed, these interactions play a key role in cell migration. Not surprisingly then, this gene has been found expressed during the development of tightly regulated tissues, such as the heart, lungs, gonads, and ovaries. For example, in early development of the heart tube in Drosophila, Slit and two of its Robo receptors guide migrating cardioblasts and pericardial cells in the dorsal midline. [7] In addition, research on mice has shown that Slit3 and its interaction with Robo1 may be crucial to the development and maturation of lung tissue. Similarly, the expression of Slit3 is upregulated when aligning airway epithelium with endothelium. [10] Due to its regulating function in tissue development, absence or mutations in the expression of these genes can result in abnormalities of these tissues. Several studies in mice and other vertebrates have shown that this deficit results in death almost immediately after birth.
The Slit2 protein has recently been discovered to be associated with the development of new blood vessels from pre-existing vessels, or angiogenesis. Recent research has debated on whether this gene inhibits or stimulates this process. There has been significant proof to conclude that both are true, depending on the context. It has been concluded that the role of Slit in this process depends on which receptor it binds, the cellular context of its target cells, and/or other environmental factors. [12] Slit2 has been implicated in promoting angiogenesis in mice (both in vitro and in vivo), in the human placenta, [12] and in tumorigenesis. [13]
Because of their part in forebrain development, during which they contribute to axonal guidance and guiding signals in the movement of cortical interneurons, Slit-Robo signal transduction mechanisms could possibly be used in therapy and treatment of neurological disorders and certain types of cancer. [11] Procedures have been found in which Slit genes allow for precise control over vascular guidance cues influencing the organization of blood vessels during development. [14] Slit also plays a large role in angiogenesis. With increased knowledge of this relationship, treatments could be developed for complications with development of embryo vasculature, female reproductive cycling, tumor grown, and metastasis, ischemic cardiovascular diseases, or ocular disorders. [15]
Due to its pivotal role in controlling cell migration, abnormalities or absences in the expression of Slit1, Slit2 and Slit3 are associated with a variety of cancers. In particular, Slit-Robo interaction has been implicated in reproductive and hormone dependent cancers, particularly in females. Under normal function, these genes act as tumor suppressors. Therefore, deletion or lack of expression of these genes is associated with tumorigenesis, particularly tumors within the epithelium of the ovaries, endometrium, and cervix. Samples of surface epithelium in cancer ridden ovaries has exhibited that these cells show decreased expression of Slit2 and Slit3. In addition, absence of these genes allows the migration of cancer cells and thus is associated with increased cancer progression and increased metastasis. [7] The role of this gene and its place in cancer treatment and development is becoming increasingly unraveled but increasingly complex.
The Notch signaling pathway is a highly conserved cell signaling system present in most animals. Mammals possess four different notch receptors, referred to as NOTCH1, NOTCH2, NOTCH3, and NOTCH4. The notch receptor is a single-pass transmembrane receptor protein. It is a hetero-oligomer composed of a large extracellular portion, which associates in a calcium-dependent, non-covalent interaction with a smaller piece of the notch protein composed of a short extracellular region, a single transmembrane-pass, and a small intracellular region.
In cellular biology, the Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.
Axon guidance is a subfield of neural development concerning the process by which neurons send out axons to reach their correct targets. Axons often follow very precise paths in the nervous system, and how they manage to find their way so accurately is an area of ongoing research.
Netrins are a class of proteins involved in axon guidance. They are named after the Sanskrit word "netr", which means "one who guides". Netrins are genetically conserved across nematode worms, fruit flies, frogs, mice, and humans. Structurally, netrin resembles the extracellular matrix protein laminin.
The floor plate is a structure integral to the developing nervous system of vertebrate organisms. Located on the ventral midline of the embryonic neural tube, the floor plate is a specialized glial structure that spans the anteroposterior axis from the midbrain to the tail regions. It has been shown that the floor plate is conserved among vertebrates, such as zebrafish and mice, with homologous structures in invertebrates such as the fruit fly Drosophila and the nematode C. elegans. Functionally, the structure serves as an organizer to ventralize tissues in the embryo as well as to guide neuronal positioning and differentiation along the dorsoventral axis of the neural tube.
Eph receptors are a group of receptors that are activated in response to binding with Eph receptor-interacting proteins (Ephrins). Ephs form the largest known subfamily of receptor tyrosine kinases (RTKs). Both Eph receptors and their corresponding ephrin ligands are membrane-bound proteins that require direct cell-cell interactions for Eph receptor activation. Eph/ephrin signaling has been implicated in the regulation of a host of processes critical to embryonic development including axon guidance, formation of tissue boundaries, cell migration, and segmentation. Additionally, Eph/ephrin signaling has been identified to play a critical role in the maintenance of several processes during adulthood including long-term potentiation, angiogenesis, and stem cell differentiation and cancer.
Mothers against decapentaplegic homolog 3 also known as SMAD family member 3 or SMAD3 is a protein that in humans is encoded by the SMAD3 gene.
Prickle is also known as REST/NRSF-interacting LIM domain protein, which is a putative nuclear translocation receptor. Prickle is part of the non-canonical Wnt signaling pathway that establishes planar cell polarity. A gain or loss of function of Prickle1 causes defects in the convergent extension movements of gastrulation. In epithelial cells, Prickle2 establishes and maintains cell apical/basal polarity. Prickle1 plays an important role in the development of the nervous system by regulating the movement of nerve cells.
Netrin receptor DCC, also known as DCC, or colorectal cancer suppressor is a protein which in humans is encoded by the DCC gene. DCC has long been implicated in colorectal cancer and its previous name was Deleted in colorectal carcinoma. Netrin receptor DCC is a single transmembrane receptor.
Ephrins are a family of proteins that serve as the ligands of the Eph receptor. Eph receptors in turn compose the largest known subfamily of receptor protein-tyrosine kinases (RTKs).
A plexin is a protein which acts as a receptor for semaphorin family signaling proteins. It is classically known for its expression on the surface of axon growth cones and involvement in signal transduction to steer axon growth away from the source of semaphorin. Plexin also has implications in development of other body systems by activating GTPase enzymes to induce a number of intracellular biochemical changes leading to a variety of downstream effects.
Slit homolog 2 protein is a protein that in humans is encoded by the SLIT2 gene.
Roundabout homolog 1 is a protein that in humans is encoded by the ROBO1 gene.
Netrin-1 is a protein that in humans is encoded by the NTN1 gene.
Slit homolog 1 protein is a protein that in humans is encoded by the SLIT1 gene.
Slit homolog 3 protein is a protein that in humans is encoded by the SLIT3 gene.
Roundabout homolog 2 is a protein that in humans is encoded by the ROBO2 gene.
The Roundabout (Robo) family of proteins are single-pass transmembrane receptors that are highly conserved across many branches of the animal kingdom, from C. elegans to humans. They were first discovered in Drosophila, through a mutant screen for genes involved in axon guidance. The Drosophila roundabout mutant was named after its phenotype, which resembled the circular traffic junctions. The Robo receptors are most well known for their role in the development of the nervous system, where they have been shown to respond to secreted Slit ligands. One well-studied example is the requirement for Slit-Robo signaling in regulation of axonal midline crossing. Slit-Robo signaling is also critical for many neurodevelopmental processes including formation of the olfactory tract, the optic nerve, and motor axon fasciculation. In addition, Slit-Robo signaling contributes to cell migration and the development of other tissues such as the lung, kidney, liver, muscle and breast. Mutations in Robo genes have been linked to multiple neurodevelopmental disorders in humans.
Slit-Robo is the name of a cell signaling protein complex with many diverse functions including axon guidance and angiogenesis.
The growth cone is a highly dynamic structure of the developing neuron, changing directionality in response to different secreted and contact-dependent guidance cues; it navigates through the developing nervous system in search of its target. The migration of the growth cone is mediated through the interaction of numerous trophic and tropic factors; netrins, slits, ephrins and semaphorins are four well-studied tropic cues (Fig.1). The growth cone is capable of modifying its sensitivity to these guidance molecules as it migrates to its target; this sensitivity regulation is an important theme seen throughout development.