Sodium ethyl xanthate

Last updated
Sodium ethyl xanthate
Sodium-ethylxanthate-2D-skeletal.png
Sodium ethyl xanthate 3D ball.png
Names
IUPAC name
sodium O-ethylcarbonodithioate
Other names
Sodium ethylxanthogenate
Sodium-O-ethyl dithiocarbonate
SEX
Identifiers
3D model (JSmol)
AbbreviationsSEX
ChemSpider
ECHA InfoCard 100.004.947 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-440-9
PubChem CID
UNII
  • InChI=1S/C3H6OS2.Na/c1-2-4-3(5)6;/h2H2,1H3,(H,5,6);/q;+1/p-1
    Key: RZFBEFUNINJXRQ-UHFFFAOYSA-M
  • CCOC(=S)[S-].[Na+]
Properties
C3H5NaOS2
Molar mass 144.18 g·mol−1
AppearancePale yellow powder [1]
Density 1.263 g/cm3 [1]
Melting point 182 to 256 °C (360 to 493 °F; 455 to 529 K) [1]
Boiling point decomposes
450 g/L (10 °C) [1]
Acidity (pKa)1.6 [1]
Basicity (pKb)12.4 [1]
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H228, H302, H311, H314, H315, H319, H332, H335
P210, P240, P241, P260, P261, P264, P270, P271, P280, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P310, P312, P321, P322, P330, P332+P313, P337+P313, P361, P362, P363, P370+P378, P403+P233, P405, P501
250 °C (482 °F; 523 K) [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Sodium ethyl xanthate (SEX) [3] is an organosulfur compound with the chemical formula CH3CH2OCS2Na. It is a pale yellow powder, which is usually obtained as the dihydrate. Sodium ethyl xanthate is used in the mining industry as a flotation agent. [4] A closely related potassium ethyl xanthate (KEX) is obtained as the anhydrous salt.

Contents

Production

Akin to the preparation of most xanthates, sodium ethyl xanthate can be prepared by treating sodium ethoxide with carbon disulfide: [5]
  CH3CH2ONa + CS2 → CH3CH2OCS2Na

Properties and reactions

Sodium ethyl xanthate is a pale yellow powder. Its aqueous solutions are stable at high pH if not heated. It rapidly hydrolyses at pH less than 9 at 25 °C. It is the conjugate base of the ethyl xanthic acid, a strong acid with pKa of 1.6 and pKb estimated as 12.4 for the conjugate base. [6] Sodium ethyl xanthate easily adsorbs on the surface of many sulfide minerals, [2] a key step in froth flotation.

Xanthates are susceptible to hydrolysis and oxidation [7] at low pH:

C2H5OCS2Na + H+ → C2H5OH + CS2 + Na+

Oxidation gives diethyl dixanthogen disulfide:

4C2H5OCS2Na + 2H2O + O2 → 2(C2H5OCS2)2 + 4 NaOH

Detection

Sodium ethyl xanthate can be identified through optical absorption peaks in the infrared (1179, 1160, 1115, 1085 cm−1) and ultraviolet (300 nm) ranges. There are at least six chemical detection methods:

  1. Iodometric method relies on oxidation to dixanthogen by iodine, with the product detected with a starch indicator. This method is however is not selective and suffers from interferences with other sulfur-containing chemicals. [8]
  2. Xanthate can be reacted with a copper sulfate or copper tartrate resulting in a copper xanthate residue which is detected with iodine. This method has an advantage of being is insensitive to sulfite, thiosulfate and carbonate impurities. [9]
  3. In the acid-base detection method, a dilute aqueous xanthate solution is reacted with a copious amount of 0.01 M hydrochloric acid yielding carbon disulfide and alcohol, which are evaluated. The excess acid and impurities are removed through filtering and titration. [9]
  4. In the argentometric method, sodium ethyl xanthate is reacted with silver nitrate in a dilute solution. The resulted silver xanthate is detected with 10% aqueous solution of iron nitrate. The drawbacks of this method are high cost of silver and blackening of silver xanthate by silver nitrate that reduces the detection accuracy. [9]
  5. In the mercurimetric method, xanthate is dissolved in 40% aqueous solution of dimethylamine, followed by heating and titration with o-hydroxymercuribenzoate. The product is detected with dithiofluorescein. [9]
  6. Perchloric acid method involves dissolution of xanthate in water-free acetic acid. The product is titrated with perchloric acid and detected with crystal violet. [9]

Sodium ethyl xanthate can also be quantified using gravimetry, by weighing the lead xanthate residue obtained after reacting SEX with 10% solution of lead nitrate. There are also several electrochemical detection methods, which can be combined with some of the above chemical techniques. [9]

Applications

Sodium ethyl xanthate is used in the mining industry as flotation agent for recovery of metals, such as copper, nickel, silver or gold, as well as solid metal sulfides or oxides from ore slurries. This application was introduced by Cornelius H. Keller in 1925. Other applications include defoliant, herbicide, and an additive to rubber to protect it against oxygen and ozone. [10]

In 2000, Australia produced up to 10,000 tonnes of sodium ethyl xanthate and imported about 6,000 tonnes, mostly from China. [11] The material produced in Australia is the so-called 'liquid sodium ethyl xanthate' that refers to a 40% aqueous solution of the solid. [12] It is obtained by treating carbon disulfide with sodium hydroxide and ethanol. [13] Its density is 1.2 g/cm3 and the freezing point is −6 °C. [14]

Safety

Sodium ethyl xanthate has moderate oral and dermal toxicity in animals and is irritating to eyes and skin. [13] It is especially toxic to aquatic life and therefore its disposal is strictly controlled. [15] Median lethal dose for (male albino mice, oral, 10% solution at pH~11) is 730 mg/kg of body weight, with most deaths occurring in the first day. The most affected organs were the central nervous system, liver and spleen. [16]

Since 1993, sodium ethyl xanthate is classified as a Priority Existing Chemical in Australia, meaning that its manufacture, handling, storage, use or disposal may result in adverse health or environment effects. This decision was justified by the widespread use of the chemical in industry and its decomposition to the toxic and flammable carbon disulfide gas. From two examples of sodium ethyl xanthate spillage in Australia, one resulted in evacuation of 100 people and hospitalization of 6 workers who were exposed to the fumes. In another accident, residents of the spillage area complained of headache, dizziness, and nausea. [17] Consequently, during high-risk sodium ethyl xanthate handling operations, workers are required by the Australian regulations to be equipped with protective clothing, anti-static gloves, boots and full-face respirators or self-contained breathing apparatus. [18]

Related Research Articles

<span class="mw-page-title-main">Nitrate</span> Polyatomic ion (NO₃, charge –1) found in explosives and fertilisers

Nitrate is a polyatomic ion with the chemical formula NO
3
. Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are soluble in water. An example of an insoluble nitrate is bismuth oxynitrate.

<span class="mw-page-title-main">Perchloric acid</span> Chemical compound

Perchloric acid is a mineral acid with the formula HClO4. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous solutions up to approximately 70% by weight at room temperature are generally safe, only showing strong acid features and no oxidizing properties. Perchloric acid is useful for preparing perchlorate salts, especially ammonium perchlorate, an important rocket fuel component. Perchloric acid is dangerously corrosive and readily forms potentially explosive mixtures.

<span class="mw-page-title-main">Nitro compound</span> Organic compound containing an −NO₂ group

In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups. The nitro group is one of the most common explosophores used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with nitric acid.

<span class="mw-page-title-main">Sodium azide</span> Chemical compound

Sodium azide is an inorganic compound with the formula NaN3. This colorless salt is the gas-forming component in some car airbag systems. It is used for the preparation of other azide compounds. It is an ionic substance, is highly soluble in water, and is acutely poisonous.

<span class="mw-page-title-main">Tollens' reagent</span> Chemical reagent used to distinguish between aldehydes and ketones

Tollens' reagent is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes. The reagent consists of a solution of silver nitrate, ammonium hydroxide and some sodium hydroxide. It was named after its discoverer, the German chemist Bernhard Tollens. A positive test with Tollens' reagent is indicated by the precipitation of elemental silver, often producing a characteristic "silver mirror" on the inner surface of the reaction vessel.

<span class="mw-page-title-main">Froth flotation</span> Process for selectively separating of hydrophobic materials from hydrophilic

Froth flotation is a process for selectively separating hydrophobic materials from hydrophilic. This is used in mineral processing, paper recycling and waste-water treatment industries. Historically this was first used in the mining industry, where it was one of the great enabling technologies of the 20th century. It has been described as "the single most important operation used for the recovery and upgrading of sulfide ores". The development of froth flotation has improved the recovery of valuable minerals, such as copper- and lead-bearing minerals. Along with mechanized mining, it has allowed the economic recovery of valuable metals from much lower-grade ore than previously.

<span class="mw-page-title-main">Xanthate</span> Salt that is a metal-thioate/O-esters of dithiocarbonate

A xanthate is a salt or ester of a xanthic acid. The formula of the salt of xanthic acid is [R−O−CS2]M+. Xanthate also refers to the anion [R−O−CS2]. The formula of a xanthic acid is R−O−C(=S)−S−H, such as ethyl xanthic acid, while the formula of an ester of a xanthic acid is R−O−C(=S)−S−R', where R and R' are organyl groups. The salts of xanthates are also called O-organyl dithioates. The esters of xanthic acid are also called O,S-diorganyl esters of dithiocarbonic acid. The name xanthate is derived from Ancient Greek ξανθός (xanthos) meaning 'yellowish' or 'golden', and indeed most xanthate salts are yellow. They were discovered and named in 1823 by Danish chemist William Christopher Zeise. These organosulfur compounds are important in two areas: the production of cellophane and related polymers from cellulose and for extraction of certain sulphide bearing ores. They are also versatile intermediates in organic synthesis.

<span class="mw-page-title-main">Thioglycolic acid</span> Chemical compound

Thioglycolic acid (TGA) is the organic compound HSCH2CO2H. TGA is often called mercaptoacetic acid (MAA). It contains both a thiol (mercaptan) and carboxylic acid functional groups. It is a colorless liquid with a strongly unpleasant odor. TGA is miscible with polar organic solvents.

<span class="mw-page-title-main">Liquid–liquid extraction</span> Method to separate compounds or metal complexes

Liquid–liquid extraction, also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar). There is a net transfer of one or more species from one liquid into another liquid phase, generally from aqueous to organic. The transfer is driven by chemical potential, i.e. once the transfer is complete, the overall system of chemical components that make up the solutes and the solvents are in a more stable configuration. The solvent that is enriched in solute(s) is called extract. The feed solution that is depleted in solute(s) is called the raffinate. Liquid-liquid extraction is a basic technique in chemical laboratories, where it is performed using a variety of apparatus, from separatory funnels to countercurrent distribution equipment called as mixer settlers. This type of process is commonly performed after a chemical reaction as part of the work-up, often including an acidic work-up.

A nitrate test is a chemical test used to determine the presence of nitrate ion in solution. Testing for the presence of nitrate via wet chemistry is generally difficult compared with testing for other anions, as almost all nitrates are soluble in water. In contrast, many common ions give insoluble salts, e.g. halides precipitate with silver, and sulfate precipitate with barium.

<span class="mw-page-title-main">Silver compounds</span> Chemical compounds containing silver

Silver is a relatively unreactive metal, although it can form several compounds. The common oxidation states of silver are (in order of commonness): +1 (the most stable state; for example, silver nitrate, AgNO3); +2 (highly oxidising; for example, silver(II) fluoride, AgF2); and even very rarely +3 (extreme oxidising; for example, potassium tetrafluoroargentate(III), KAgF4). The +3 state requires very strong oxidising agents to attain, such as fluorine or peroxodisulfate, and some silver(III) compounds react with atmospheric moisture and attack glass. Indeed, silver(III) fluoride is usually obtained by reacting silver or silver monofluoride with the strongest known oxidizing agent, krypton difluoride.

<span class="mw-page-title-main">Acetic acid</span> Colorless and faint organic acid found in vinegar

Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water. It has been used, as a component of vinegar, throughout history from at least the third century BC.

Isopropyl alcohol is a colorless, flammable organic compound with a pungent alcoholic odor.

Thiocarbonate describes a family of anions with the general chemical formula CS
3−x
O2−
x
(x = 0, 1, or 2):

<span class="mw-page-title-main">Potassium ethyl xanthate</span> Chemical compound

Potassium ethyl xanthate (KEX) is an organosulfur compound with the chemical formula CH3CH2OCS2K. It is a pale yellow powder that is used in the mining industry for the separation of ores. It is a potassium salt of ethyl xanthic acid.

<span class="mw-page-title-main">Mercaptobenzothiazole</span> Chemical compound

2-Mercaptobenzothiazole is an organosulfur compound with the formula C6H4(NH)SC=S. A white solid, it is used in the sulfur vulcanization of rubber.

Silver hyponitrite is an ionic compound with formula Ag2N2O2 or (Ag+
)2[ON=NO]2−, containing monovalent silver cations and hyponitrite anions. It is a bright yellow solid practically insoluble in water and most organic solvents, including DMF and DMSO.

Nitroxylic acid or hydronitrous acid is an unstable reduced oxonitrogen acid. It has formula H4N2O4 containing nitrogen in the +2 oxidation state. The corresponding anion called nitroxylate is N
2
O4−
4
or NO2−
2
.

Potassium amyl xanthate (/pəˈtæsiəm ˌæmɪl ˈzænθeɪt/) is an organosulfur compound with the chemical formula CH3(CH2)4OCS2K. It is a pale yellow powder with a pungent odor that is soluble in water. It is widely used in the mining industry for the separation of ores using the flotation process.

<span class="mw-page-title-main">Diethyl dixanthogen disulfide</span> Chemical compound

Diethyl dixanthogen disulfide is the organosulfur compound with the formula (C2H5OC S)2. It is one of the most common dixanthogen disulfides, compounds of the type (ROC S)2. A yellow solid, It is obtained by oxidation of sodium ethylxanthate or potassium ethylxanthate.

References

  1. 1 2 3 4 5 6 Report 5 (1995) p. 5
  2. 1 2 Report 5 (1995) p. 6
  3. Caroline Cooper (23 July 2010). Organic Chemist's Desk Reference. CRC Press. pp. 123 (Acronyms and Miscellaneous Terms used in Describing Organic Molecules). ISBN   978-1-4398-1164-1 . Retrieved 22 February 2011.
  4. Kathrin-Maria Roy (2005). "Xanthates". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a28_423. ISBN   3527306730.
  5. Ingram, G.; Toms, B. A. (1961). "The reactions of sodium ethyl xanthate with ethanol and with water". Journal of the Chemical Society (Resumed): 117–127. doi:10.1039/JR9610000117.
  6. Millican, Robert J.; Sauers, Carol K. (1979). "General acid-catalyzed decomposition of alkyl xanthates". The Journal of Organic Chemistry. 44 (10): 1664–1669. doi:10.1021/jo01324a018.
  7. Report 5 (1995) pp. 14–16
  8. Report 5 (1995) p. 8
  9. 1 2 3 4 5 6 Report 5 (1995) p. 9
  10. Report 5 (1995), p. 2, citing Rao, R.S., “Xanthates and Related Compounds”, Marcel Dekker, New York, 1971 ISBN   0-8247-1563-2 and Keller, C.H. (1925) U.S. patent 1,554,216 "Concentration of gold, sulphide minerals and uranium oxide minerals by flotation from ores and metallurgical plant products"
  11. Report 5s (2000) p. 1
  12. Report 5s (2000) p. 3
  13. 1 2 Report 5s (2000) p. v
  14. Report 5s (2000) p. 7
  15. Report 5 (1995) pp. 43–45
  16. Report 5 (1995) p. 17
  17. Report 5 (1995) p. 1
  18. Report 5s (2000) p. vi

Bibliography