Soluta (echinoderm)

Last updated

Soluta
Temporal range: DrumianLower Devonian
Castericystis sprinklei - MHNT - Millard County, Utha, USA.jpg
Fossil specimen of Coleicarpus sprinklei
Castericystis vali.svg
Silhouette of Castericystis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Superphylum: Deuterostomia
Clade: Ambulacraria
Phylum: Echinodermata
Class: Soluta
Jaekel, 1901
Orders
  • Syringocrinida
  • Dendrocystitida

Soluta is an extinct class of echinoderms that lived from the Middle Cambrian to the Early Devonian. [1] The class is also known by its junior synonym Homoiostelea. Soluta is one of the four "carpoid" classes, alongside Ctenocystoidea, Cincta, and Stylophora, which made up the obsolete subphylum Homalozoa. Solutes (or solutans) were asymmetric animals with a stereom skeleton and two appendages, an arm extending anteriorly and a posterior appendage called a homoiostele.

Contents

Biology

Most solutes were free-living, but the basal solutan Coleicarpus used its homoiostele as a holdfast, as did juvenile Castericystis. [2] [3]

Classification

Coleicarpus

Castericystis

Minervaecystis

Girvanicystis

Dendrocystites

Maennilia

Heckericystis

Dendrocystoides

Claritacarpus

Rutroclypeus

Iowacystis

Scalenocystites

Syringocrinus

Myeinocystites

Belemnocystites

Phylogenetic relationships within Soluta [4]

The phylogenetic position of Soluta is contentious. Solutans are widely agreed to be echinoderms, though the outmoded [5] calcichordate hypothesis held that they were ancestral to both echinoderms and chordates. [6] Within echinoderms, one hypothesis holds that stylophorans are stem-group echinoderms which branched off before echinoderms evolved radial symmetry. [7] Another hypothesis holds that they are specialized descendants of radiate echinoderms which lost radial symmetry, likely belonging to Blastozoa. [8]

Solutes are divided into two orders, Syringocrinida and Dendrocystitida. [9]

Distribution

The earliest solutes, Coleicarpus and Castericystis, lived during the Drumian age of the Cambrian. [3] Solutes were the last of the four carpoid classes to appear in the fossil record. Solutes appear to have evolved in Laurentia, [3] but became more widespread during the Ordovician. [10]

Related Research Articles

<span class="mw-page-title-main">Chordate</span> Phylum of animals having a dorsal nerve cord

A chordate is an animal belonging to the phylum Chordata. All chordates possess, at some point during their larval or adult stages, five distinctive physical characteristics (synapomorphies) that distinguish them from other taxa. These five synapomorphies are a notochord, a hollow dorsal nerve cord, an endostyle or thyroid, pharyngeal slits, and a post-anal tail. The name "chordate" comes from the first of these synapomorphies, the notochord, which plays a significant role in chordate structure and movement. Chordates are also bilaterally symmetric, have a coelom, possess a circulatory system, and exhibit metameric segmentation.

<span class="mw-page-title-main">Crinoid</span> Class of echinoderms

Crinoids are marine animals that make up the class Crinoidea. Crinoids that are attached to the sea bottom by a stalk in their juvenile form are commonly called sea lilies, while the unstalked forms, called feather stars or comatulids, are members of the largest crinoid order, Comatulida. Crinoids are echinoderms in the phylum Echinodermata, which also includes the starfish, brittle stars, sea urchins and sea cucumbers. They live in both shallow water and in depths as great as 9,000 meters (30,000 ft).

<i>Cothurnocystis</i> Extinct genus of marine invertebrates

Cothurnocystis is a genus of small enigmatic echinoderms that lived during the Ordovician. Individual animals had a flat boot-shaped body and a thin rod-shaped appendage that may be a stem, or analogous to a foot or a tail. Fossils of Cothurnocystis species have been found in Nevada, Scotland, Czech Republic, France and Morocco.

<span class="mw-page-title-main">Edrioasteroidea</span> Extinct class of marine invertebrates

Edrioasteroidea is an extinct class of echinoderms. The living animal would have resembled a pentamerously symmetrical disc or cushion. They were obligate encrusters and attached themselves to inorganic or biologic hard substrates. A 507 million years old species, Totiglobus spencensis, is actually the first known echinoderm adapted to live on a hard surface after the soft microbial mats that covered the seafloor were destroyed in the Cambrian substrate revolution.

<span class="mw-page-title-main">Stylophora</span> Extinct group of marine invertebrates

The stylophorans are an extinct, possibly polyphyletic group allied to the Paleozoic Era echinoderms, comprising the prehistoric cornutes and mitrates. It is synonymous with the subphylum Calcichordata. Their unusual appearances have led to a variety of very different reconstructions of their anatomy, how they lived, and their relationships to other organisms.

<span class="mw-page-title-main">Deuterostome</span> Superphylum of bilateral animals

Deuterostomia are animals typically characterized by their anus forming before their mouth during embryonic development. The group's sister clade is Protostomia, animals whose digestive tract development is more varied. Some examples of deuterostomes include vertebrates, sea stars, and crinoids.

<span class="mw-page-title-main">Homalozoa</span> Extinct historic group of marine invertebrates

Homalozoa is an obsolete extinct subphylum of Paleozoic era echinoderms, prehistoric marine invertebrates. They are also referred to as carpoids.

<span class="mw-page-title-main">Fezouata Formation</span> Burgess shale-type deposits

The Fezouata Formation or Fezouata Shale is a geological formation in Morocco which dates to the Early Ordovician. It was deposited in a marine environment, and is known for its exceptionally preserved fossils, filling an important preservational window beyond the earlier and more common Cambrian Burgess shale-type deposits.

The calcichordate hypothesis holds that each separate lineage of chordate evolved from its own lineage of mitrate, and thus the echinoderms and the chordates are sister groups, with the hemichordates as an out-group.

Kailidiscus is an extinct genus of echinoderms which existed in what is now China during the Middle Cambrian period. It was named by Yuanlong Zhao, Colin D. Sumrall, Ronald L. Parsley and Jin Peng in 2010, and the type and only species is Kailidiscus chinensis. It bears close resemblance to the Burgess Shale fossil Walcottidiscus.

<span class="mw-page-title-main">Cambroernid</span> Extinct clade of animals

The cambroernids are an informally-named clade of unusual Paleozoic animals with coiled bodies and filamentous tentacles. They include a number of early to middle Paleozoic genera noted as 'bizarre" or "orphan" taxa, meaning that their affinities with other animals, living or extinct, has long been uncertain. One leading hypothesis is that cambroernids were unusual ambulacrarian deuterostomes, related to echinoderms and hemichordates. Previously some cambroernids were compared to members of the broad invertebrate clade Lophotrochozoa; in particularly they were allied with lophophorates, a subset of lophotrochozoans bearing ciliated tentacles known as lophophores. However, this interpretation has more recently been considered unlikely relative to the deuterostome hypothesis for cambroernid origins.

<span class="mw-page-title-main">Stereom</span>

Stereom is a calcium carbonate material that makes up the internal skeletons found in all echinoderms, both living and fossilized forms. It is a sponge-like porous structure which, in a sea urchin may be 50% by volume living cells, and the rest being a matrix of calcite crystals. The size of openings in stereom varies in different species and in different places within the same organism. When an echinoderm becomes a fossil, microscopic examination is used to reveal the structure and such examination is often an important tool to classify the fossil as an echinoderm or related creature.

Rhenopyrgus is an extinct echinoderm in the class Edrioasteroidea, which existed during the Devonian in what is now France and Germany, the Ordovician in Iowa and Illinois, U.S.A.; and the Silurian of Argentina. It was described by Dehm in 1961, and the type species is R. coronaeformis, which was originally described by J. Rievers as a species in the genus Pyrgocystis, in 1961. A new species, R. piojoensis, was described by Colin D. Sumrall, Susana Heredia, Cecilia M. Rodríguez and Ana I. Mestre in 2012, from 116 specimens collected from the Los Espejos Formation in the Loma de Los Piojos locality near San José de Jáchal, Argentina. The species epithet refers to the locality where the specimens were collected from. In 2019 another species, R. viviani, was described by researchers from the Natural History Museum, London, led by Tim Ewin.

<span class="mw-page-title-main">Cincta</span> Extinct class of marine invertebrates

Cincta is an extinct class of echinoderms that lived only in the Middle Cambrian epoch. Homostelea is a junior synonym. The classification of cinctans is controversial, but they are probably part of the echinoderm stem group.

<span class="mw-page-title-main">Cornuta</span> Extinct order of marine invertebrates

Cornuta is an extinct order of echinoderms. Along with the mitrates, they form the Stylophora.

Diploporita is an extinct class of blastozoan that ranged from the Ordovician to the Devonian. These echinoderms are identified by a specialized respiratory structure, called diplopores. Diplopores are a double pore system that sit within a depression on a single thecal (body) plate; each plate can contain numerous diplopore pairs.

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2018.

<span class="mw-page-title-main">Ctenocystoidea</span> Extinct clade of marine invertebrates

Ctenocystoidea is an extinct clade of echinoderms, which lived during the Cambrian and Ordovician periods. Unlike other echinoderms, ctenocystoids had bilateral symmetry, or were only very slightly asymmetrical. They are believed to be one of the earliest-diverging branches of echinoderms, with their bilateral symmetry a trait shared with other deuterostomes. Ctenocystoids were once classified in the taxon Homalozoa, also known as Carpoidea, alongside cinctans, solutes, and stylophorans. Homalozoa is now recognized as a polyphyletic group of echinoderms without radial symmetry. Ctenocystoids were geographically widespread during the Middle Cambrian, with one species surviving into the Late Ordovician.

<i>Yanjiahella</i> Extinct genus of marine invertebrates

Yanjiahella biscarpa is an extinct species of Early Cambrian deuterostome which may represent the earliest stem group echinoderms.

Yorkicystis is a genus of edrioasteroid echinoderm that lived 510 million years ago in the Cambrian aged Kinzers Formation in what is now Pennsylvania. This genus is important as it provides some of the oldest evidence of echinoderms losing their hard mineralized outer skeletons. Yorkicystis also shows that some echinoderms lost their skeletons during the Cambrian, which is a greatly different time as to when most other species lost theirs.

References

  1. Lefebvre, Bertrand; Derstler, Kraig; Sumrall, Colin D. (2012). "A reinterpretation of the solutan Plasiacystis mobilis (Echinodermata) from the Middle Ordovician of Bohemia". Zoosymposia. 7: 287–306. doi:10.11646/zoosymposia.7.1.27.
  2. Daley, Paul E. J. (1996). "The first solute which is attached as an adult: a Mid-Cambrian fossil from Utah with echinoderm and chordate affinities". Zoological Journal of the Linnean Society. 117 (4): 405–440. doi: 10.1111/j.1096-3642.1996.tb01659.x . ISSN   0024-4082.
  3. 1 2 3 Lefebvre, Bertrand; Lerosey-Aubril, Rudy (2017). "Laurentian origin of solutan echinoderms: new evidence from the Guzhangian (Cambrian Series 3) Weeks Formation of Utah, USA". Geological Magazine. 155 (5): 1190–1204. doi:10.1017/S0016756817000152. S2CID   132681380.
  4. Parsley, Ronald L.; Rozhnov, Sergei V.; Sumrall, Colin D. (2012). "Morphologic and systematic revision of the solute Maennilia estonica (Homoiostelea, Echinodermata) from the Upper Ordovician of Estonia". Journal of Paleontology. 86 (3): 462–469. doi:10.1666/11-083.1. S2CID   129760226.
  5. Rahman, Imran A. (2009). "Making sense of carpoids". Geology Today. 25 (1): 34–38. doi:10.1111/j.1365-2451.2009.00703.x. S2CID   129493134.
  6. Jefferies, R. P. S. (1990). "The solute Dendrocystites scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms". Palaeontology. 33 (3): 631–679.
  7. Smith, Andrew B. (2005). "The pre-radial history of echinoderms". Geological Journal. 40 (3): 255–280. doi:10.1002/gj.1018. S2CID   86388965.
  8. David, Bruno; Lefebvre, Bertrand; Mooi, Rich; Parsley, Ronald (2000). "Are homalozoans echinoderms? An answer from the extraxial-axial theory". Paleobiology. 26 (4): 529–555. doi:10.1666/0094-8373(2000)026<0529:AHEAAF>2.0.CO;2. S2CID   86167693.
  9. Noailles, Fleur; Lefebvre, Bertrand; Kašička, Libor (2014). "A probable case of heterochrony in the solutan Dendrocystites Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938". Bulletin of Geosciences. 89 (3): 451–476. doi: 10.3140/bull.geosci.1475 . ISSN   1214-1119.
  10. Zamora, Samuel; Lefebvre, Bertrand; Javier Álvaro, J.; Clausen, Sébastien; Elicki, Olaf; Fatka, Oldrich; Jell, Peter; Kouchinsky, Artem; Lin, Jih-Pai; Nardin, Elise; Parsley, Ronald; Rozhnov, Sergei; Sprinkle, James; Sumrall, Colin D.; Vizcaïno, Daniel; Smith, Andrew B. (2013). "Cambrian echinoderm diversity and palaeobiogeography". Geological Society, London, Memoirs. 38 (1): 157–171. doi:10.1144/M38.13. S2CID   130481550.