In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory
,
there exist spaces such that evaluating the cohomology theory in degree on a space is equivalent to computing the homotopy classes of maps to the space , that is
.
Note there are several different categories of spectra leading to many technical difficulties, [1] but they all determine the same homotopy category, known as the stable homotopy category. This is one of the key points for introducing spectra because they form a natural home for stable homotopy theory.
There are many variations of the definition: in general, a spectrum is any sequence of pointed topological spaces or pointed simplicial sets together with the structure maps , where is the smash product. The smash product of a pointed space with a circle is homeomorphic to the reduced suspension of , denoted .
The following is due to Frank Adams (1974): a spectrum (or CW-spectrum) is a sequence of CW complexes together with inclusions of the suspension as a subcomplex of .
For other definitions, see symmetric spectrum and simplicial spectrum.
Some of the most important invariants of a spectrum are its homotopy groups. These groups mirror the definition of the stable homotopy groups of spaces since the structure of the suspension maps is integral in its definition. Given a spectrum define the homotopy group as the colimit
where the maps are induced from the composition of the map (that is, given by functoriality of ) and the structure map . A spectrum is said to be connective if its are zero for negative k.
Consider singular cohomology with coefficients in an abelian group . For a CW complex , the group can be identified with the set of homotopy classes of maps from to , the Eilenberg–MacLane space with homotopy concentrated in degree . We write this as
Then the corresponding spectrum has -th space ; it is called the Eilenberg–MacLane spectrum of . Note this construction can be used to embed any ring into the category of spectra. This embedding forms the basis of spectral geometry, a model for derived algebraic geometry. One of the important properties of this embedding are the isomorphisms
showing the category of spectra keeps track of the derived information of commutative rings, where the smash product acts as the derived tensor product. Moreover, Eilenberg–Maclane spectra can be used to define theories such as topological Hochschild homology for commutative rings, a more refined theory than classical Hochschild homology.
As a second important example, consider topological K-theory. At least for X compact, is defined to be the Grothendieck group of the monoid of complex vector bundles on X. Also, is the group corresponding to vector bundles on the suspension of X. Topological K-theory is a generalized cohomology theory, so it gives a spectrum. The zeroth space is while the first space is . Here is the infinite unitary group and is its classifying space. By Bott periodicity we get and for all n, so all the spaces in the topological K-theory spectrum are given by either or . There is a corresponding construction using real vector bundles instead of complex vector bundles, which gives an 8-periodic spectrum.
One of the quintessential examples of a spectrum is the sphere spectrum . This is a spectrum whose homotopy groups are given by the stable homotopy groups of spheres, so
We can write down this spectrum explicitly as where . Note the smash product gives a product structure on this spectrum
induces a ring structure on . Moreover, if considering the category of symmetric spectra, this forms the initial object, analogous to in the category of commutative rings.
Another canonical example of spectra come from the Thom spectra representing various cobordism theories. This includes real cobordism , complex cobordism , framed cobordism, spin cobordism , string cobordism , and so on. In fact, for any topological group there is a Thom spectrum .
A spectrum may be constructed out of a space. The suspension spectrum of a space , denoted is a spectrum (the structure maps are the identity.) For example, the suspension spectrum of the 0-sphere is the sphere spectrum discussed above. The homotopy groups of this spectrum are then the stable homotopy groups of , so
The construction of the suspension spectrum implies every space can be considered as a cohomology theory. In fact, it defines a functor
from the homotopy category of CW complexes to the homotopy category of spectra. The morphisms are given by
which by the Freudenthal suspension theorem eventually stabilizes. By this we mean
and
for some finite integer . For a CW complex there is an inverse construction which takes a spectrum and forms a space
called the infinite loop space of the spectrum. For a CW complex
and this construction comes with an inclusion for every , hence gives a map
which is injective. Unfortunately, these two structures, with the addition of the smash product, lead to significant complexity in the theory of spectra because there cannot exist a single category of spectra which satisfies a list of five axioms relating these structures. [1] The above adjunction is valid only in the homotopy categories of spaces and spectra, but not always with a specific category of spectra (not the homotopy category).
An Ω-spectrum is a spectrum such that the adjoint of the structure map (i.e., the map) is a weak equivalence. The K-theory spectrum of a ring is an example of an Ω-spectrum.
A ring spectrum is a spectrum X such that the diagrams that describe ring axioms in terms of smash products commute "up to homotopy" ( corresponds to the identity.) For example, the spectrum of topological K-theory is a ring spectrum. A module spectrum may be defined analogously.
For many more examples, see the list of cohomology theories.
There are three natural categories whose objects are spectra, whose morphisms are the functions, or maps, or homotopy classes defined below.
A function between two spectra E and F is a sequence of maps from En to Fn that commute with the maps ΣEn → En+1 and ΣFn → Fn+1.
Given a spectrum , a subspectrum is a sequence of subcomplexes that is also a spectrum. As each i-cell in suspends to an (i + 1)-cell in , a cofinal subspectrum is a subspectrum for which each cell of the parent spectrum is eventually contained in the subspectrum after a finite number of suspensions. Spectra can then be turned into a category by defining a map of spectra to be a function from a cofinal subspectrum of to , where two such functions represent the same map if they coincide on some cofinal subspectrum. Intuitively such a map of spectra does not need to be everywhere defined, just eventually become defined, and two maps that coincide on a cofinal subspectrum are said to be equivalent. This gives the category of spectra (and maps), which is a major tool. There is a natural embedding of the category of pointed CW complexes into this category: it takes to the suspension spectrum in which the nth complex is .
The smash product of a spectrum and a pointed complex is a spectrum given by (associativity of the smash product yields immediately that this is indeed a spectrum). A homotopy of maps between spectra corresponds to a map , where is the disjoint union with taken to be the basepoint.
The stable homotopy category, or homotopy category of (CW) spectra is defined to be the category whose objects are spectra and whose morphisms are homotopy classes of maps between spectra. Many other definitions of spectrum, some appearing very different, lead to equivalent stable homotopy categories.
Finally, we can define the suspension of a spectrum by . This translation suspension is invertible, as we can desuspend too, by setting .
The stable homotopy category is additive: maps can be added by using a variant of the track addition used to define homotopy groups. Thus homotopy classes from one spectrum to another form an abelian group. Furthermore the stable homotopy category is triangulated (Vogt (1970)), the shift being given by suspension and the distinguished triangles by the mapping cone sequences of spectra
The smash product of spectra extends the smash product of CW complexes. It makes the stable homotopy category into a monoidal category; in other words it behaves like the (derived) tensor product of abelian groups. A major problem with the smash product is that obvious ways of defining it make it associative and commutative only up to homotopy. Some more recent definitions of spectra, such as symmetric spectra, eliminate this problem, and give a symmetric monoidal structure at the level of maps, before passing to homotopy classes.
The smash product is compatible with the triangulated category structure. In particular the smash product of a distinguished triangle with a spectrum is a distinguished triangle.
We can define the (stable) homotopy groups of a spectrum to be those given by
where is the sphere spectrum and is the set of homotopy classes of maps from to . We define the generalized homology theory of a spectrum E by
and define its generalized cohomology theory by
Here can be a spectrum or (by using its suspension spectrum) a space.
One of the canonical complexities while working with spectra and defining a category of spectra comes from the fact each of these categories cannot satisfy five seemingly obvious axioms concerning the infinite loop space of a spectrum
sending
a pair of adjoint functors , the and the smash product in both the category of spaces and the category of spectra. If we let denote the category of based, compactly generated, weak Hausdorff spaces, and denote a category of spectra, the following five axioms can never be satisfied by the specific model of spectra: [1]
where is the unit map in the adjunction.
Because of this, the study of spectra is fractured based upon the model being used. For an overview, check out the article cited above.
A version of the concept of a spectrum was introduced in the 1958 doctoral dissertation of Elon Lages Lima. His advisor Edwin Spanier wrote further on the subject in 1959. Spectra were adopted by Michael Atiyah and George W. Whitehead in their work on generalized homology theories in the early 1960s. The 1964 doctoral thesis of J. Michael Boardman gave a workable definition of a category of spectra and of maps (not just homotopy classes) between them, as useful in stable homotopy theory as the category of CW complexes is in the unstable case. (This is essentially the category described above, and it is still used for many purposes: for other accounts, see Adams (1974) or Rainer Vogt (1970).) Important further theoretical advances have however been made since 1990, improving vastly the formal properties of spectra. Consequently, much recent literature uses modified definitions of spectrum: see Michael Mandell et al. (2001) for a unified treatment of these new approaches.
In mathematics, the Poincaré lemma gives a sufficient condition for a closed differential form to be exact. Precisely, it states that every closed p-form on an open ball in Rn is exact for p with 1 ≤ p ≤ n. The lemma was introduced by Henri Poincaré in 1886.
In topology, a branch of mathematics, the smash product of two pointed spaces (i.e. topological spaces with distinguished basepoints) (X,x0) and (Y, y0) is the quotient of the product space X × Y under the identifications (x, y0) ~ (x0, y) for all x in X and y in Y. The smash product is itself a pointed space, with basepoint being the equivalence class of (x0, y0). The smash product is usually denoted X ∧ Y or X ⨳ Y. The smash product depends on the choice of basepoints (unless both X and Y are homogeneous).
In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.
In mathematics, and specifically in the field of homotopy theory, the Freudenthal suspension theorem is the fundamental result leading to the concept of stabilization of homotopy groups and ultimately to stable homotopy theory. It explains the behavior of simultaneously taking suspensions and increasing the index of the homotopy groups of the space in question. It was proved in 1937 by Hans Freudenthal.
In mathematics, in particular in algebraic topology, the Hopf invariant is a homotopy invariant of certain maps between n-spheres.
In mathematics, the Adams spectral sequence is a spectral sequence introduced by J. Frank Adams which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre.
In mathematics, the Puppe sequence is a construction of homotopy theory, so named after Dieter Puppe. It comes in two forms: a long exact sequence, built from the mapping fibre, and a long coexact sequence, built from the mapping cone. Intuitively, the Puppe sequence allows us to think of homology theory as a functor that takes spaces to long-exact sequences of groups. It is also useful as a tool to build long exact sequences of relative homotopy groups.
In mathematics, specifically algebraic topology, there is a distinguished class of spectra called Eilenberg–Maclane spectra for any Abelian group pg 134. Note, this construction can be generalized to commutative rings as well from its underlying Abelian group. These are an important class of spectra because they model ordinary integral cohomology and cohomology with coefficients in an abelian group. In addition, they are a lift of the homological structure in the derived category of abelian groups in the homotopy category of spectra. In addition, these spectra can be used to construct resolutions of spectra, called Adams resolutions, which are used in the construction of the Adams spectral sequence.
In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by Dennis Sullivan and Daniel Quillen. This simplification of homotopy theory makes certain calculations much easier.
In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.
In the mathematical disciplines of algebraic topology and homotopy theory, Eckmann–Hilton duality in its most basic form, consists of taking a given diagram for a particular concept and reversing the direction of all arrows, much as in category theory with the idea of the opposite category. A significantly deeper form argues that the fact that the dual notion of a limit is a colimit allows us to change the Eilenberg–Steenrod axioms for homology to give axioms for cohomology. It is named after Beno Eckmann and Peter Hilton.
In mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory.
In algebraic topology, Hilton's theorem, proved by Peter Hilton, states that the loop space of a wedge of spheres is homotopy-equivalent to a product of loop spaces of spheres.
In homotopy theory, a branch of mathematics, the Barratt–Priddy theorem expresses a connection between the homology of the symmetric groups and mapping spaces of spheres. The theorem is also often stated as a relation between the sphere spectrum and the classifying spaces of the symmetric groups via Quillen's plus construction.
In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets. It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.
This is a glossary of properties and concepts in algebraic topology in mathematics.
In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline.
In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .
In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids which have a bifunctor which acts formally like the addition an Abelian group. Namely, the bifunctor has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups.