Professor Stephen James Eichhorn FRSC FInstP FIMMM CEng | |
---|---|
Born | Manchester |
Education | Leeds University, UMIST |
Alma mater | Leeds University |
Children | 2 |
Awards | Rosenhain Medal, Hayashi Jisuke Prize, Swinburne Medal |
Scientific career | |
Fields | cellulosic materials |
Institutions | Manchester University, Exeter University, Bristol University |
Doctoral advisor | Wadood Hamad |
Other academic advisors | Professor Robert Young FRS FREng |
Stephen James Eichhorn (born 24 July 1972) FRSC FInstP FIMMM CEng is Professor of Materials Science and Engineering at the University of Bristol.
Born in Manchester and brought up near Nantwich, Eichhorn attended Malbank High School. On leaving school he went to University of Leeds to study Physics, graduating in 1993. He then went on to study for an MSc in Forestry and Paper Industries Technology at UMIST and Bangor University until 1996. He then undertook doctoral research into cellulose fibres as a PhD student, graduating in 1999. Following this he undertook postdoctoral research at UMIST under the supervision of Robert Young where he worked on cellulose fibres and micromechanics using Raman Spectroscopy. [1]
Eichhorn was hired as a Lecturer in 2002 in Polymer Physics and Biomaterials and was promoted to Senior lecturer in 2006 and Reader in 2008, all at UMIST and the newly formed University of Manchester. [2] In 2011 he moved to the University of Exeter as Chair in Materials Science and was Head of Engineering from 2014-2017. [2] In 2017 he moved to the University of Bristol as Professor of Materials Science and Engineering, and was interim Head of School (in 2017/18). [2] He was awarded an EPSRC ED&I fellowship in the Physical Sciences in 2021. [3]
Eichhorn's research focusses on the structure property relationships of cellulose and renewable materials as well as an interest in decolonisation of STEM subjects and has published in this area. [4] [5] In 2021 he was one of the authors of a paper in the journal Science on moldable wood. [6] He published the first paper that showed that the modulus of tunicate cellulose nanocrystals was exceptionally high (around 143 GPa), [7] and also carried out similar work on bacterial cellulose [8] and microcrystalline cellulose. [9] He has since demonstrated the use of cellulose in a variety of potential applications, including supercapacitors [10] and lithium-ion batteries, [11] sodium-ion batteries, [11] and sodium metal batteries. [12] [13] He is the first author of two highly-cited review papers in Journal of Materials Science on the subject of cellulose fibres and natural fibre composites. [14] [15]
Other research has included the production of synthetic seashell structures in collaboration with the chemist Fiona Meldrum [16] [17] and also work on the mechanical properties of fingernails, [18] [19] stories about which appeared in the UK press. [20] [21] [22]
Eichhorn has over 19,000 citations to his published works, and an H-index of 60. [23]
Eichhorn was awarded the Rosenhain Medal & Prize from the Institute of Materials, Minerals and Mining in 2012, the Hayashi Jisuke Award from the Japanese Cellulose Society in 2017, [24] and the Swinburne Medal in 2020 again from the Institute of Materials, Minerals and Mining. [25] Eichhorn was a runner up for a prize for the best paper to be published in Journal of the Royal Society Interface [26] for a paper co-authored with Professor William Sampson, Manchester University. [27] He was the first UK based scientist to be a Chair of the Cellulose and Renewable Materials Division of the American Chemical Society in 2015. [28] He is currently also a member of the Strategic Advisory Board for the Henry Royce Institute [29] and was a member of the Strategic Advisory Team (SAT) for Engineering at the Engineering and Physical Sciences Research Council. [30]
Eichhorn appeared in an episode of the One Show with talking about the strength of nanocellulose, [31] and has contributed comments on other people's research in various articles. [32] [33] [34] In 2011 Eichhorn also got the local council to remove double yellow lines from outside a house he was renting out in Glossop, the story of which appeared in the Manchester Evening News . [35] He was a co-opted member of the Windrush Commemoration Committee chaired by Floella Benjamin. [36]
Cellulose is an organic compound with the formula (C
6H
10O
5)
n, a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms. Cellulose is the most abundant organic polymer on Earth. The cellulose content of cotton fibre is 90%, that of wood is 40–50%, and that of dried hemp is approximately 57%.
Spider silk is a protein fibre or silk spun by spiders. Spiders use silk to make webs or other structures that function as adhesive traps to catch prey, to entangle and restrain prey before biting, to transmit tactile information, or as nests or cocoons to protect their offspring. They can use the silk to suspend themselves from height, to float through the air, or to glide away from predators. Most spiders vary the thickness and adhesiveness of their silk according to its use.
Rayon, also called viscose and commercialised in some countries as sabra silk or cactus silk, is a semi-synthetic fiber, made from natural sources of regenerated cellulose, such as wood and related agricultural products. It has the same molecular structure as cellulose. Many types and grades of viscose fibers and films exist. Some imitate the feel and texture of natural fibers such as silk, wool, cotton, and linen. The types that resemble silk are often called artificial silk. It can be woven or knit to make textiles for clothing and other purposes.
Young's modulus is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Young's modulus is defined as the ratio of the stress applied to the object and the resulting axial strain in the linear elastic region of the material.
A hydrogel is a biphasic material, a mixture of porous and permeable solids and at least 10% of water or other interstitial fluid. The solid phase is a water insoluble three dimensional network of polymers, having absorbed a large amount of water or biological fluids. Hydrogels have several applications, especially in the biomedical area, such as in hydrogel dressing. Many hydrogels are synthetic, but some are derived from natural materials. The term "hydrogel" was coined in 1894.
Natural fibers or natural fibres are fibers that are produced by geological processes, or from the bodies of plants or animals. They can be used as a component of composite materials, where the orientation of fibers impacts the properties. Natural fibers can also be matted into sheets to make paper or felt.
Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness. High specific modulus materials find wide application in aerospace applications where minimum structural weight is required. The dimensional analysis yields units of distance squared per time squared. The equation can be written as:
The Doctor of Engineering is a research doctorate in engineering and applied science. An EngD is a terminal degree similar to a PhD in engineering but applicable more in industry rather than in academia. The degree is usually aimed toward working professionals.
A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose – either a therapeutic or a diagnostic one. The corresponding field of study, called biomaterials science or biomaterials engineering, is about fifty years old. It has experienced steady growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering and materials science.
Fiber-reinforced concrete or fibre-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It contains short discrete fibers that are uniformly distributed and randomly oriented. Fibers include steel fibers, glass fibers, synthetic fibers and natural fibers – each of which lend varying properties to the concrete. In addition, the character of fiber-reinforced concrete changes with varying concretes, fiber materials, geometries, distribution, orientation, and densities.
An Ion gel is a composite material consisting of an ionic liquid immobilized by an inorganic or a polymer matrix. The material has the quality of maintaining high ionic conductivity while in the solid state. To create an ion gel, the solid matrix is mixed or synthesized in-situ with an ionic liquid. A common practice is to utilize a block copolymer which is polymerized in solution with an ionic liquid so that a self-assembled nanostructure is generated where the ions are selectively soluble. Ion gels can also be made using non-copolymer polymers such as cellulose, oxides such as silicon dioxide or refractory materials such as boron nitride.
Douglas Bruce Kell is a British biochemist and Professor of Systems Biology in the Institute of Systems, Molecular and Integrative Biology at the University of Liverpool. He was previously at the School of Chemistry at the University of Manchester, based in the Manchester Institute of Biotechnology (MIB) where he founded and led the Manchester Centre for Integrative Systems Biology (MCISB). He served as chief executive officer (CEO) of the Biotechnology and Biological Sciences Research Council (BBSRC) from 2008 to 2013.
Nanocellulose is a term referring to a familly of cellulosic materials that have at least one of their dimensions in the nanoscale. Examples of nanocellulosic materials are microfibrilated cellulose, cellulose nanofibers or cellulose nanocrystals. Nanocellulose may be obtained from natural cellulose fibers through different production processes. This family of materials possess various interesting properties for a wide range of potential applications.
Bacterial cellulose is an organic compound with the formula (C
6H
10O
5)
n produced by certain types of bacteria. While cellulose is a basic structural material of most plants, it is also produced by bacteria, principally of the genera Komagataeibacter, Acetobacter, Sarcina ventriculi and Agrobacterium. Bacterial, or microbial, cellulose has different properties from plant cellulose and is characterized by high purity, strength, moldability and increased water holding ability. In natural habitats, the majority of bacteria synthesize extracellular polysaccharides, such as cellulose, which form protective envelopes around the cells. While bacterial cellulose is produced in nature, many methods are currently being investigated to enhance cellulose growth from cultures in laboratories as a large-scale process. By controlling synthesis methods, the resulting microbial cellulose can be tailored to have specific desirable properties. For example, attention has been given to the bacteria Komagataeibacter xylinus due to its cellulose's unique mechanical properties and applications to biotechnology, microbiology, and materials science.
Michael Elmhirst Cates is a British physicist. He is the 19th Lucasian Professor of Mathematics at the University of Cambridge and has held this position since 1 July 2015. He was previously Professor of Natural Philosophy at the University of Edinburgh, and has held a Royal Society Research Professorship since 2007.
Stephen John Haake is a British sports engineer. He is professor of sports engineering at Sheffield Hallam University, England and is founding director of the university's advanced wellbeing research centre.
Christoph Weder is the former director of the Adolphe Merkle Institute (AMI) at the University of Fribourg, Switzerland, and a professor of polymer chemistry and materials. He is best known for his work on stimuli-responsive polymers, polymeric materials that change one or more of their properties when exposed to external cues. His research is focused on the development, investigation, and application of functional materials, in particular stimuli-responsive and bio-inspired polymers.
Biofoams are biological or biologically derived foams, making up lightweight and porous cellular solids. A relatively new term, its use in academia began in the 1980s in relation to the scum that formed on activated sludge plants.
Monica Felicia Crăciun is a British-Romanian physicist who is a Professor of Nanoscience at the University of Exeter. Her research investigates 2D Materials for civil engineering, wearable technologies and optoelectronic devices. Craciun has pioneered the incorporation of graphene into concrete, wearable technologies and optoelectronic devices.
Xiaowen Yuan is a New Zealand materials scientist, and is a full professor at the Auckland University of Technology, specialising in novel composite materials from natural materials for high performance uses, such as improving supercapacitor performance.