Symmetric product (topology)

Last updated

In algebraic topology, the nthsymmetric product of a topological space consists of the unordered n-tuples of its elements. If one fixes a basepoint, there is a canonical way of embedding the lower-dimensional symmetric products into the higher-dimensional ones. That way, one can consider the colimit over the symmetric products, the infinite symmetric product. This construction can easily be extended to give a homotopy functor.

Contents

From an algebraic point of view, the infinite symmetric product is the free commutative monoid generated by the space minus the basepoint, the basepoint yielding the identity element. That way, one can view it as the abelian version of the James reduced product.

One of its essential applications is the Dold-Thom theorem, stating that the homotopy groups of the infinite symmetric product of a connected CW complex are the same as the reduced homology groups of that complex. That way, one can give a homotopical definition of homology.

Definition

Let X be a topological space and n ≥ 1 a natural number. Define the nth symmetric product of X or the n-fold symmetric product of X as the space

Here, the symmetric group Sn acts on Xn by permuting the factors. Hence, the elements of SPn(X) are the unordered n-tuples of elements of X. Write [x1, ..., xn] for the point in SPn(X) defined by (x1, ..., xn) ∈ Xn.

Note that one can define the nth symmetric product in any category where products and colimits exist. Namely, one then has canonical isomorphisms φ : X × YY × X for any objects X and Y and can define the action of the transposition on Xn as , thereby inducing an action of the whole Sn on Xn. This means that one can consider symmetric products of objects like simplicial sets as well. Moreover, if the category is cartesian closed, the distributive law X × (YZ) ≅ X × YX × Z holds and therefore one gets

If (X, e) is a based space, it is common to set SP0(X) = {e}. Further, Xn can then be embedded into Xn+1 by sending (x1, ..., xn) to (x1, ..., xn, e). This clearly induces an embedding of SPn(X) into SPn+1(X). Therefore, the infinite symmetric product can be defined as

A definition avoiding category theoretic notions can be given by taking SP(X) to be the union of the increasing sequence of spaces SPn(X) equipped with the direct limit topology. This means that a subset of SP(X) is open if and only if all its intersections with the SPn(X) are open. We define the basepoint of SP(X) as [e]. That way, SP(X) becomes a based space as well.

One can generalise this definition as well to pointed categories where products and colimits exist. Namely, in this case one has a canonical map XnXn+1, induced by the identity XnXn and the zero map XnX. So this results in a direct system of the symmetric products, too and one can therefore define its colimit as the infinite symmetric product.

Examples

Sp2(sn).png

Although calculating SP(Sn) for n ≥ 3 turns out to be quite difficult, one can still describe SP2(Sn) quite well as the mapping cone of a map ΣnRPn-1Sn, where Σn stands for applying the reduced suspension n times and RPn−1 is the (n − 1)-dimensional real projective space: One can view SP2(Sn) as a certain quotient of Dn × Dn by identifying Sn with Dn/∂Dn. Interpreting Dn × Dn as the cone on its boundary Dn × ∂Dn ∪ ∂Dn × Dn, the identifications for SP2 respect the concentric copies of the boundary. Hence, it suffices to only consider these. The identifications on the boundary ∂Dn × DnDn × ∂Dn of Dn × Dn itself yield Sn. This is clear as this is a quotient of Dn × ∂Dn and as ∂Dn is collapsed to one point in Sn. The identifications on the other concentric copies of the boundary yield the quotient space Z of Dn × ∂Dn, obtained by identifying (x, y) with (y, x) whenever both coordinates lie in ∂Dn. Define a map f: Dn × RPn−1Z by sending a pair (x, L) to (w, z). Here, z ∈ ∂Dn and wDn are chosen on the line through x parallel to L such that x is their midpoint. If x is the midpoint of the segment zz′, there is no way to distinguish between z and w, but this is not a problem since f takes values in the quotient space Z. Therefore, f is well-defined. As f(x, L) = f(x, L′) holds for every x ∈ ∂Dn, f factors through ΣnRPn−1 and is easily seen to be a homeomorphism on this domain.

Properties

H-space structure

As SP(X) is the free commutative monoid generated by X − {e} with identity element e, it can be thought of as a commutative analogue of the James reduced product J(X). This means that SP(X) is the quotient of J(X) obtained by identifying points that differ only by a permutation of coordinates. Therefore, the H-space structure on J(X) induces one on SP(X) if X is a CW complex, making it a commutative and associative H-space with strict identity. As such, the Dold-Thom theorem implies that all its k-invariants vanish, meaning that it has the weak homotopy type of a generalised Eilenberg-MacLane space if X is path-connected. [4] However, if X is an arbitrary space, the multiplication on SP(X) may fail to be continuous. [5]

Functioriality

SPn is a homotopy functor: A map f: XY clearly induces a map SPn(f) : SPn(X) → SPn(Y) given by SPn(f)[x1, ..., xn] = [f(x1), ..., f(xn)]. A homotopy between two maps f, g: XY yields one between SPn(f) and SPn(g). Also, one can easily see that the diagram

Functoriality (2).svg

commutes, meaning that SP is a functor as well. Similarly, SP is even a homotopy functor on the category of pointed spaces and basepoint-preserving homotopy classes of maps. In particular, XY implies SPn(X) ≃ SPn(Y), but in general not SP(X) ≃ SP(Y) as homotopy equivalence may be affected by requiring maps and homotopies to be basepoint-preserving. However, this is not the case if one requires X and Y to be connected CW complexes. [6]

Simplicial and CW structure

SP(X) inherits certain structures of X: For a simplicial complex X, one can also install a simplicial structure on Xn such that each n-permutation is either the identity on a simplex or a homeomorphism from one simplex to another. This means that one gets a simplicial structure on SPn(X). Furthermore, SPn(X) is also a subsimplex of SPn+1(X) if the basepoint eX is a vertex, meaning that SP(X) inherits a simplicial structure in this case as well. [7] However, one should note that Xn and SPn(X) do not need to have the weak topology if X has uncountably many simplices. [8] An analogous statement can be made if X is a CW complex. Nevertheless, it is still possible to equip SP(X) with the structure of a CW complex such that both topologies have the same compact sets if X is an arbitrary simplicial complex. [9] So the distinction between the two topologies will not cause any differences for purposes of homotopy, e.g.

Homotopy

One of the main uses of infinite symmetric products is the Dold-Thom theorem. It states that the reduced homology groups coincide with the homotopy groups of the infinite symmetric product of a connected CW complex. This allows one to reformulate homology only using homotopy which can be very helpful in algebraic geometry. It also means that the functor SP maps Moore spaces M(G, n) to Eilenberg-MacLane spaces K(G, n). Therefore, it yields a natural way to construct the latter spaces given the proper Moore spaces.

It has also been studied how other constructions combined with the infinite symmetric product affect the homotopy groups. For example, it has been shown that the map

is a weak homotopy equivalence, where ΣX = XS1 denotes the reduced suspension and ΩY stands for the loop space of the pointed space Y. [10]

Homology

Unsurprisingly, the homology groups of the symmetric product cannot be described as easily as the homotopy groups. Nevertheless, it is known that the homology groups of the symmetric product of a CW complex are determined by the homology groups of the complex. More precisely, if X and Y are CW complexes and R is a principal ideal domain such that Hi(X, R) ≅ Hi(Y, R) for all ik, then Hi(SPn(X), R) ≅ Hi(SPn(Y), R) holds as well for all ik. This can be generalised to Γ-products, defined in the next section. [11]

For a simplicial set K, one has furthermore

Passing to geometric realisations, one sees that this statement holds for connected CW complexes as well. [12] Induction yields furthermore

[13]

S. Liao introduced a slightly more general version of symmetric products, called Γ-products for a subgroup Γ of the symmetric group Sn. [14] The operation was the same and hence he defined XΓ = Xn/Γ as the Γ-product of X. That allowed him to study cyclic products, the special case for Γ being the cyclic group, as well.

When establishing the Dold-Thom theorem, they also considered the "quotient group" Z[X] of SP(X). This is the free abelian group over X with the basepoint as the zero element. If X is a CW complex, it is even a topological group. In order to equip this group with a topology, Dold and Thom initially introduced it as the following quotient over the infinite symmetric product of the wedge sum of X with a copy of itself: Let τ : XXXX be interchanging the summands. Furthermore, let ~ be the equivalence relation on SP(XX) generated by

for x, y ∈ SP(XX). Then one can define Z[X] as

Since ~ is compatible with the addition in SP(XX), one gets an associative and commutative addition on Z[X]. One also has the topological inclusions X ⊂ SP(X) ⊂ Z[X] [15] and it can easily be seen that this construction has properties similar to the ones of SP, like being a functor.

McCord gave a construction generalising both SP(X) and Z[X]: Let G be a monoid with identity element 1 and let (X, e) be a pointed set. Define

Then B(G, X) is again a monoid under pointwise multiplication which will be denoted by ⋅. Let gx denote the element of B(G, X) taking the value g at x and being 1 elsewhere for gG, xX − {e}. Moreover, ge shall denote the function being 1 everywhere, the unit of B(G, X).

In order to install a topology on B(G, X), one needs to demand that X be compactly generated and that G be an abelian topological monoid. Define Bn(G, X) to be the subset of B(G, X) consisting of all maps that differ from the constant function 1 at no more than n points. Bn(G, X) gets equipped with the final topology of the map

Now, Bn(G, X) is a closed subset of Bn+1(G, X). [16] Then B(G, X) can be equipped with the direct limit topology, making it again a compactly generated space. One can then identify SP(X) respectively Z[X] with B(N, X) respectively B(Z, X).

Moreover, B(⋅,⋅) is functorial in the sense that B: C × DC is a bifunctor for C being the category of abelian topological monoids and D being the category of pointed CW complexes. [17] Here, the map B(φ, f) : B(G, X) → B(H, Y) for a morphism φ: GH of abelian topological monoids and a continuous map f: XY is defined as

for all giG and xiX. As in the preceding cases, one sees that a based homotopy ft : XY induces a homotopy B(Id, ft) : B(G, X) → B(G, Y) for an abelian topological monoid G.

Using this construction, the Dold-Thom theorem can be generalised. Namely, for a discrete module M over a commutative ring with unit one has

for based spaces X and Y having the homotopy type of a CW complex. [18] Here, n denotes reduced homology and [X, Z] stands for the set of all based homotopy classes of basepoint-preserving maps XZ. As M is a module, [X, B(M, Y)] has an obvious group structure. Inserting X = Sn and M = Z yields the Dold-Thom theorem for Z[X].

It is noteworthy as well that B(G, S1) is a classifying space for G if G is a topological group such that the inclusion {1} → G is a cofibration. [19]

Notes

  1. Morton, Hugh R. (1967). "Symmetric Products of the Circle". Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 63. Cambridge University Press. pp. 349–352.
  2. Symmetric Product of Circles on nLab
  3. Hatcher (2002), Example 4K.4
  4. Dold and Thom (1958), Satz 7.1
  5. Spanier (1959), Footnote 2
  6. Hatcher (2002), p.481
  7. Aguilar, Gitler and Prieto (2008), Note 5.2.2
  8. Dold and Thom (1958), 3.3
  9. Hatcher (2002), pp.482-483
  10. Spanier (1959), Theorem 10.1
  11. Dold (1958), Theorem 7.2
  12. Milgram, R. James (1969), "The Homology of Symmetric Products", Transactions of the American Mathematical Society, 138: 251–265
  13. Spanier (1959), Theorem 7.2
  14. Liao (1954)
  15. Dold and Thom (1958), 4.7
  16. McCord (1969), Lemma 6.2
  17. McCord (1969), Corollary 6.9
  18. McCord (1969), Theorem 11.5
  19. McCord (1969), Theorem 9.17

Related Research Articles

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

<span class="mw-page-title-main">Homotopy</span> Continuous deformation between two continuous functions

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In category theory, a branch of mathematics, a pushout is the colimit of a diagram consisting of two morphisms f : ZX and g : ZY with a common domain. The pushout consists of an object P along with two morphisms XP and YP that complete a commutative square with the two given morphisms f and g. In fact, the defining universal property of the pushout essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are and .

<span class="mw-page-title-main">Holonomy</span> Concept in differential geometry

In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

In topology, a branch of mathematics, the smash product of two pointed spaces (i.e. topological spaces with distinguished basepoints) (X,x0) and (Y, y0) is the quotient of the product space X × Y under the identifications (xy0) ∼ (x0y) for all x in X and y in Y. The smash product is itself a pointed space, with basepoint being the equivalence class of (x0, y0). The smash product is usually denoted X ∧ Y or X ⨳ Y. The smash product depends on the choice of basepoints (unless both X and Y are homogeneous).

In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space.

In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle . As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.

In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.

In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory

,

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

In mathematics, a pointed space or based space is a topological space with a distinguished point, the basepoint. The distinguished point is just simply one particular point, picked out from the space, and given a name, such as that remains unchanged during subsequent discussion, and is kept track of during all operations.

<span class="mw-page-title-main">Suspension (topology)</span>

In topology, a branch of mathematics, the suspension of a topological space X is intuitively obtained by stretching X into a cylinder and then collapsing both end faces to points. One views X as "suspended" between these end points. The suspension of X is denoted by SX or susp(X).

In the mathematical subject of geometric group theory, the Culler–Vogtmann Outer space or just Outer space of a free group Fn is a topological space consisting of the so-called "marked metric graph structures" of volume 1 on Fn. The Outer space, denoted Xn or CVn, comes equipped with a natural action of the group of outer automorphisms Out(Fn) of Fn. The Outer space was introduced in a 1986 paper of Marc Culler and Karen Vogtmann, and it serves as a free group analog of the Teichmüller space of a hyperbolic surface. Outer space is used to study homology and cohomology groups of Out(Fn) and to obtain information about algebraic, geometric and dynamical properties of Out(Fn), of its subgroups and individual outer automorphisms of Fn. The space Xn can also be thought of as the set of Fn-equivariant isometry types of minimal free discrete isometric actions of Fn on Fn on R-treesT such that the quotient metric graph T/Fn has volume 1.

In algebraic topology, the cellular approximation theorem states that a map between CW-complexes can always be taken to be of a specific type. Concretely, if X and Y are CW-complexes, and f : XY is a continuous map, then f is said to be cellular, if f takes the n-skeleton of X to the n-skeleton of Y for all n, i.e. if for all n. The content of the cellular approximation theorem is then that any continuous map f : XY between CW-complexes X and Y is homotopic to a cellular map, and if f is already cellular on a subcomplex A of X, then we can furthermore choose the homotopy to be stationary on A. From an algebraic topological viewpoint, any map between CW-complexes can thus be taken to be cellular.

In mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory.

In algebraic topology, the Dold-Thom theorem states that the homotopy groups of the infinite symmetric product of a connected CW complex are the same as its reduced homology groups. The most common version of its proof consists of showing that the composition of the homotopy group functors with the infinite symmetric product defines a reduced homology theory. One of the main tools used in doing so are quasifibrations. The theorem has been generalised in various ways, for example by the Almgren isomorphism theorem.

In homotopy theory, a branch of mathematics, the Barratt–Priddy theorem expresses a connection between the homology of the symmetric groups and mapping spaces of spheres. The theorem is also often stated as a relation between the sphere spectrum and the classifying spaces of the symmetric groups via Quillen's plus construction.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is learned as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories).

References