Systemic primary carnitine deficiency

Last updated
Systemic primary carnitine deficiency
Other namesCarnitine deficiency, systemic primary (CDSP), [1] [2] Carnitine uptake defect (CUD), [1] Carnitine transporter deficiency (CTD) [3] or Systemic carnitine deficiency (SCD) [2]
Carnitine structure.png
Carnitine
Specialty Endocrinology   OOjs UI icon edit-ltr-progressive.svg

Systemic primary carnitine deficiency (SPCD) [1] is an inborn error of fatty acid transport caused by a defect in the transporter responsible for moving carnitine across the plasma membrane. Carnitine is an important amino acid for fatty acid metabolism. [4] When carnitine cannot be transported into tissues, fatty acid oxidation is impaired, leading to a variety of symptoms such as chronic muscle weakness, cardiomyopathy, hypoglycemia and liver dysfunction. The specific transporter involved with SPCD is OCTN2, coded for by the SLC22A5 gene located on chromosome 5. SPCD is inherited in an autosomal recessive manner, with mutated alleles coming from both parents.

Contents

Acute episodes due to SPCD are often preceded by metabolic stress such as extended fasting, infections or vomiting. Cardiomyopathy can develop in the absence of an acute episode, and can result in death. SPCD leads to increased carnitine excretion in the urine and low levels in plasma. In most locations with expanded newborn screening, SPCD can be identified and treated shortly after birth. Treatment with high doses of carnitine supplementation is effective, but needs to be rigorously maintained for life.

Signs and symptoms

The presentation of patient with SPCD can be incredibly varied, from asymptomatic to lethal cardiac manifestations. [5] Early cases were reported with liver dysfunction, muscular findings (weakness and underdevelopment), hypoketotic hypoglycemia, cardiomegaly, cardiomyopathy and marked carnitine deficiency in plasma and tissues, combined with increased excretion in urine. [5] Patients who present clinically with SPCD fall into two categories, a metabolic presentation with hypoglycemia and a cardiac presentation characterized by cardiomyopathy. Muscle weakness can be found with either presentation. [6]

In countries with expanded newborn screening, SPCD can be identified shortly after birth. Affected infants show low levels of free carnitine and all other acylcarnitine species by tandem mass spectrometry. [6] Not all infants with low free carnitine are affected with SPCD. Some may have carnitine deficiency secondary to another metabolic condition or due to maternal carnitine deficiency. Proper follow-up of newborn screening results for low free carnitine includes studies of the mother to determine whether her carnitine deficiency is due to SPCD or secondary to a metabolic disease or diet. [7] Maternal cases of SPCD have been identified at a higher than expected rate, often in women who are asymptomatic. [6] [8] Some mothers have also been identified through newborn screening with cardiomyopathy that had not been previously diagnosed. [9] The identification and treatment of these asymptomatic individuals is still developing, as it is not clear whether they require the same levels of intervention as patients identified with SPCD early in life based on clinical presentation. [6]

Genetics

SPCD is an autosomal recessive condition, meaning a mutated allele must be inherited from each parent for an individual to be affected. [5] The gene responsible for the OCTN2 carnitine transporter is SLC22A5 , located at 5q31.1-32. SLC22A5 is regulated by peroxisome proliferator-activated receptor alpha. The transporter, OCTN2, is located in the apical membrane of the renal tubular cells, where it plays a role in tubular reabsorption. [6]

The defective OCTN2 is unable to recapture carnitine prior to its excretion in urine, leading to the characteristic biochemical findings of massively increased urine carnitine levels and significantly decreased plasma carnitine levels. [5] Decreased levels of plasma carnitine inhibit fatty acid oxidation during times of excessive energy demand. Carnitine is needed to transport long chain fatty acids into the mitochondria, where they can be broken down to produce acetyl-CoA. Individuals with SPCD cannot produce ketone bodies as energy due to the interruption of fatty acid oxidation. [6] Although SPCD is an autosomal recessive condition, heterozygotes have been shown to be at an increased risk for developing benign cardiomyopathy compared to wild type individuals. [5]

Diagnosis

The first suspicion of SPCD in a patient with a non-specific presentation is an extremely low plasma carnitine level. When combined with an increased concentration of carnitine in urine, the suspicion of SPCD can often be confirmed by either molecular testing or functional studies assessing the uptake of carnitine in cultured fibroblasts. [6]

Treatment

Identification of patients presymptomatically via newborn screening has allowed early intervention and treatment. Treatment for SPCD involves high dose carnitine supplementation, which must be continued for life. [6] Individuals who are identified and treated at birth have very good outcomes, including the prevention of cardiomyopathy. [5] Mothers who are identified after a positive newborn screen but are otherwise asymptomatic are typically offered carnitine supplementation as well. The long-term outcomes for asymptomatic adults with SPCD is not known, but the discovery of mothers with undiagnosed cardiomyopathy and SPCD has raised the possibility that identification and treatment may prevent adult-onset manifestations. [6] [9]

Incidence

Worldwide, SPCD is most common in the Faroe Islands, where at least one out of every 1000 inhabitants of the Faroes have the disorder, according to the Faroese Ministry of Health. [10] Scientists believe that around 10% of the Faroese population are carriers of variants which cause SPCD. [11] These people are not ill, but may have a lower amount of carnitine in their blood than non-carriers. The first Faroese patient was diagnosed with SPCD in 1995, [10] and since then several young people and children in the Faroese Islands have died of cardiac arrest because of SPCD. [12] The addition of SPCD to newborn screening panels has offered insight into the incidence of the disorder around the world. In Taiwan, the incidence of SPCD in newborns was estimated to be approximately 1:67,000, while maternal cases were identified at a higher frequency of approximately 1:33,000. [9] The increased incidence of SPCD in mothers compared to newborns is not completely understood. [6] Estimates of SPCD in Japan have shown a similar incidence of 1:40,000. [5]

History

Carnitine deficiency has been extensively studied, although most commonly as a secondary finding to other metabolic conditions. [5] The first case of SPCD was reported in the 1980s, in a child with fasting hypoketotic hypoglycemia that resolved after treatment with carnitine supplementation. Later cases were reported with cardiomyopathy and muscle weakness. Newborn screening expanded the potential phenotypes associated with SPCD, to include otherwise asymptomatic adults. [6]

Related Research Articles

<span class="mw-page-title-main">Adrenoleukodystrophy</span> Medical condition

Adrenoleukodystrophy (ALD) is a disease linked to the X chromosome. It is a result of fatty acid buildup caused by failure of peroxisomal fatty acid beta oxidation which results in the accumulation of very long chain fatty acids in tissues throughout the body. The most severely affected tissues are the myelin in the central nervous system, the adrenal cortex, and the Leydig cells in the testes. The long chain fatty acid buildup causes damage to the myelin sheath of the neurons of the brain, resulting in seizures and hyperactivity. Other symptoms include problems in speaking, listening, and understanding verbal instructions.

<span class="mw-page-title-main">Carnitine</span> Amino acid active in mitochondria

Carnitine is a quaternary ammonium compound involved in metabolism in most mammals, plants, and some bacteria. In support of energy metabolism, carnitine transports long-chain fatty acids from the cytosol into mitochondria to be oxidized for free energy production, and also participates in removing products of metabolism from cells. Given its key metabolic roles, carnitine is concentrated in tissues like skeletal and cardiac muscle that metabolize fatty acids as an energy source. Generally individuals, including strict vegetarians, synthesize enough L-carnitine in vivo.

<span class="mw-page-title-main">Methylmalonic acidemias</span> Medical condition

Methylmalonic acidemias, also called methylmalonic acidurias, are a group of inherited metabolic disorders, that prevent the body from properly breaking down proteins and fats. This leads to a buildup of a toxic level of methylmalonic acid in body liquids and tissues. Due to the disturbed branched-chain amino acids (BCAA) metabolism, they are among the classical organic acidemias.

<span class="mw-page-title-main">Medium-chain acyl-coenzyme A dehydrogenase deficiency</span> Medical condition

Medium-chain acyl-CoA dehydrogenase deficiency is a disorder of fatty acid oxidation that impairs the body's ability to break down medium-chain fatty acids into acetyl-CoA. The disorder is characterized by hypoglycemia and sudden death without timely intervention, most often brought on by periods of fasting or vomiting.

Inborn errors of metabolism form a large class of genetic diseases involving congenital disorders of enzyme activities. The majority are due to defects of single genes that code for enzymes that facilitate conversion of various substances (substrates) into others (products). In most of the disorders, problems arise due to accumulation of substances which are toxic or interfere with normal function, or due to the effects of reduced ability to synthesize essential compounds. Inborn errors of metabolism are often referred to as congenital metabolic diseases or inherited metabolic disorders. Another term used to describe these disorders is "enzymopathies". This term was created following the study of biodynamic enzymology, a science based on the study of the enzymes and their products. Finally, inborn errors of metabolism were studied for the first time by British physician Archibald Garrod (1857–1936), in 1908. He is known for work that prefigured the "one gene–one enzyme" hypothesis, based on his studies on the nature and inheritance of alkaptonuria. His seminal text, Inborn Errors of Metabolism, was published in 1923.

<span class="mw-page-title-main">Maple syrup urine disease</span> Autosomal recessive metabolic disorder

Maple syrup urine disease (MSUD) is a rare, inherited metabolic disorder that affects the body's ability to metabolize amino acids due to a deficiency in the activity of the branched-chain alpha-ketoacid dehydrogenase (BCKAD) complex. It particularly affects the metabolism of amino acids—leucine, isoleucine, and valine. With MSUD, the body is not able to properly break down these amino acids, therefore leading to the amino acids to build up in urine and become toxic. The condition gets its name from the distinctive sweet odor of affected infants' urine and earwax due to the buildup of these amino acids.

<span class="mw-page-title-main">3-Hydroxy-3-methylglutaryl-CoA lyase deficiency</span> Medical condition

3-Hydroxy-3-methylglutaryl-CoA lyase deficiency, (HMGCLD) also known as HMGCL deficiency, HMG-CoA lyase deficiency, or hydroxymethylglutaric aciduria, is an uncommon autosomal recessive inborn error in ketone body production and leucine breakdown caused by HMGCL gene mutations. HMGCL, located on chromosome 1p36.11's short arm, codes for HMG-CoA lyase, which aids in the metabolism of dietary proteins by converting HMG-CoA into acetyl-CoA and acetoacetate.

In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH2, which are electron carriers used in the electron transport chain. It is named as such because the beta carbon of the fatty acid chain undergoes oxidation and is converted to a carbonyl group to start the cycle all over again. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

<span class="mw-page-title-main">Carnitine palmitoyltransferase I deficiency</span> Medical condition

Carnitine palmitoyltransferase I deficiency is a rare metabolic disorder that prevents the body from converting certain fats called long-chain fatty acids(LCFA) into energy, particularly during periods without food. It is caused by a mutation in CPT1A on chromosome 11.

<span class="mw-page-title-main">Carnitine palmitoyltransferase II deficiency</span> Medical condition

Carnitine palmitoyltransferase II deficiency, sometimes shortened to CPT-II or CPT2, is an autosomal recessively inherited genetic metabolic disorder characterized by an enzymatic defect that prevents long-chain fatty acids from being transported into the mitochondria for utilization as an energy source. The disorder presents in one of three clinical forms: lethal neonatal, severe infantile hepatocardiomuscular and myopathic.

<span class="mw-page-title-main">Very long-chain acyl-coenzyme A dehydrogenase deficiency</span> Medical condition

Very long-chain acyl-coenzyme A dehydrogenase deficiency is a fatty-acid metabolism disorder which prevents the body from converting certain fats to energy, particularly during periods without food.

<span class="mw-page-title-main">Malonic aciduria</span> Medical condition

Malonic aciduria or malonyl-CoA decarboxylase deficiency (MCD) is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-CoA decarboxylase. This enzyme breaks down Malonyl-CoA into acetyl-CoA and carbon dioxide.

2,4 Dienoyl-CoA reductase deficiency is an inborn error of metabolism resulting in defective fatty acid oxidation caused by a deficiency of the enzyme 2,4 Dienoyl-CoA reductase. Lysine degradation is also affected in this disorder leading to hyperlysinemia. The disorder is inherited in an autosomal recessive manner, meaning an individual must inherit mutations in NADK2, located at 5p13.2 from both of their parents. NADK2 encodes the mitochondrial NAD kinase. A defect in this enzyme leads to deficient mitochondrial nicotinamide adenine dinucleotide phosphate levels. 2,4 Dienoyl-CoA reductase, but also lysine degradation are performed by NADP-dependent oxidoreductases explaining how NADK2 deficiency can lead to multiple enzyme defects.

<span class="mw-page-title-main">3-Methylcrotonyl-CoA carboxylase deficiency</span> Medical condition

3-Methylcrotonyl-CoA carboxylase deficiency also known as 3-Methylcrotonylglycinuria is an inborn error of leucine metabolism and is inherited through an autosomal recessive fashion. 3-Methylcrotonyl-CoA carboxylase deficiency is caused by mutations in the MCCC1 gene, formerly known as MMCA, or the MCCC2 gene, formerly known as MCCB. MCCC1 encodes the a-subunits of 3-methylcrotonyl-CoA carboxylase while MCCC2 encodes the b-subunits. The clinical presentation of 3-Methylcrotonyl-CoA carboxylase deficiency is varied, even within members of the same family.

2-Methylbutyryl-CoA dehydrogenase deficiency is an autosomal recessive metabolic disorder. It causes the body to be unable to process the amino acid isoleucine properly. Initial case reports identified individuals with developmental delay and epilepsy, however most cases identified through newborn screening have been asymptomatic.

<span class="mw-page-title-main">SLC22A5</span> Protein-coding gene in the species Homo sapiens

SLC22A5 is a membrane transport protein associated with primary carnitine deficiency. This protein is involved in the active cellular uptake of carnitine. It acts a symporter, moving sodium ions and other organic cations across the membrane along with carnitine. Such polyspecific organic cation transporters in the liver, kidney, intestine, and other organs are critical for the elimination of many endogenous small organic cations as well as a wide array of drugs and environmental toxins. Mutations in the SLC22A5 gene cause systemic primary carnitine deficiency, which can lead to heart failure.

Organic acidemia is a term used to classify a group of metabolic disorders which disrupt normal amino acid metabolism, particularly branched-chain amino acids, causing a buildup of acids which are usually not present.

<span class="mw-page-title-main">Fatty-acid metabolism disorder</span> Medical condition

A broad classification for genetic disorders that result from an inability of the body to produce or utilize an enzyme or transport protein that is required to oxidize fatty acids. They are an inborn error of lipid metabolism, and when it affects the muscles also a metabolic myopathy.

Combined malonic and methylmalonic aciduria (CMAMMA), also called combined malonic and methylmalonic acidemia is an inherited metabolic disease characterized by elevated levels of malonic acid and methylmalonic acid. However, the methylmalonic acid levels exceed those of malonic acid. CMAMMA is not only an organic aciduria but also a defect of mitochondrial fatty acid synthesis (mtFASII). Some researchers have hypothesized that CMAMMA might be one of the most common forms of methylmalonic acidemia, and possibly one of the most common inborn errors of metabolism. Due to being infrequently diagnosed, it most often goes undetected.

References

  1. 1 2 3 Systemic primary carnitine deficiency Orphanet
  2. 1 2 Online Mendelian Inheritance in Man (OMIM): 212140
  3. Carnitine transporter deficiency - newbornscreening.info
  4. Activation and Transportation of Fatty Acids for Metabolism via Carnitine Shuttle
  5. 1 2 3 4 5 6 7 8 "#212140; Carnitine Deficiency, Systemic Primary; SPCD". Johns Hopkins University . Retrieved 2012-06-03.
  6. 1 2 3 4 5 6 7 8 9 10 11 Stanley, Charles A.; Bennett, Michael J.; Longo, Nicolo (2004). "Plasma Membrane Carnitine Transport Defect". In Scriver, C.W.; Beaudet, A.L.; Sly, W.S.; et al. (eds.). Metabolic and Molecular Bases of Inherited Disease (8th ed.). New York: McGraw Hill.
  7. "C0 Free Carnitine Low" (PDF). American College of Medical Genetics. Retrieved 2012-06-03.
  8. Morris, Andrew A.M.; Spiekerkoetter, Ute (2012). "Disorders of Mitochondrial Fatty Acid Oxidation and Related Metabolic Pathways". In Saudubray, Jean-Marie; van den Berghe, Georges; Walter, John H. (eds.). Inborn Metabolic Diseases: Diagnosis and Treatment (5th ed.). New York: Springer. pp. 201–216. ISBN   978-3-642-15719-6.
  9. 1 2 3 Lee, N. C.; Tang, N. L. S.; Chien, Y. H.; Chen, C. A.; Lin, S. J.; Chiu, P. C.; Huang, A. C.; Hwu, W. L. (2010). "Diagnoses of newborns and mothers with carnitine uptake defects through newborn screening". Molecular Genetics and Metabolism. 100 (1): 46–50. doi:10.1016/j.ymgme.2009.12.015. PMID   20074989.
  10. 1 2 "Faroe Islands Ministry of Health - Information on Carnitine Transport Deficiency". Archived from the original on 22 February 2014.
  11. Dr.dk - Livsfarlig sygdom angriber færinge - By Tine Maria Borresø, 17 May 2010
  12. Lund, A. M.; Joensen, F.; Hougaard, D. M.; Jensen, L. K.; Christensen, E.; Christensen, M.; Nørgaard-Petersen, B.; Schwartz, M.; Skovby, F. (2007). "Carnitine transporter and holocarboxylase synthetase deficiencies in the Faroe Islands". Journal of Inherited Metabolic Disease. 30 (3): 341–349. doi:10.1007/s10545-007-0527-9. PMID   17417720. S2CID   2162939.