Biotinidase deficiency

Last updated
Biotinidase deficiency
Other namesBTD
Biocytin.svg
Biocytin, one of the in vivo subtrates of biotinidase
Specialty Endocrinology   OOjs UI icon edit-ltr-progressive.svg

Biotinidase deficiency is an autosomal recessive metabolic disorder in which biotin is not released from proteins in the diet during digestion or from normal protein turnover in the cell. This situation results in biotin deficiency.

Contents

Biotin is an important water-soluble nutrient that aids in the metabolism of fats, carbohydrates, and proteins. Biotin deficiency can result in behavioral disorders, lack of coordination, learning disabilities and seizures. Biotin supplementation can alleviate and sometimes totally stop such symptoms.

Signs and symptoms

Signs and symptoms of a biotinidase deficiency (BTD) can appear several days after birth. These include seizures, hypotonia and muscle/limb weakness, ataxia, paresis, hearing loss, optic atrophy, skin rashes (including seborrheic dermatitis and psoriasis), and alopecia. If left untreated, the disorder can rapidly lead to coma and death.[ citation needed ]

Neonates with BTD may not exhibit any signs, and symptoms typically appear after the first few weeks or months of life. If left untreated, around 70% of infants with BTD will experience seizures (staring spells, jerking limb movements, stiffness, flickering eyelids), which often acts as the first symptom of BTD. Infants with BTD may also have weak muscles and hypotonia; this may cause infants to appear abnormally "floppy" and have affected feeding and motor skills. BTD may result in developmental delays, vision or hearing problems, eye infections, alopecia, and eczema. The urine of infants with BTD may contain lactic acid and ammonia. Other symptoms that infants may exhibit include ataxia, breathing issues, lethargy, hepatomegaly, splenomegaly, and speech problems. The condition may eventually result in a coma and death. [1]

Biotinidase deficiency can also appear later in life. This is referred to as "late-onset" biotinidase deficiency. The symptoms are similar, but perhaps more mild, because if an individual survives the neonatal period they likely have some residual activity of biotin-related enzymes. Studies [2] [3] have noted individuals who were asymptomatic until adolescence or early adulthood. One study pointed out that untreated individuals may not show symptoms until age 21. [4] Furthermore, in rare cases, even individuals with profound deficiencies of biotinidase can be asymptomatic. [2]

Symptom severity is predictably correlated with the severity of the enzyme defect. Profound biotinidase deficiency refers to situations where enzyme activity is 10% or less. [3] Individuals with partial biotinidase deficiency may have enzyme activity of 10–30%. [3]

Functionally, there is no significant difference between dietary biotin deficiency and genetic loss of biotin-related enzyme activity. In both cases, supplementation with biotin can often restore normal metabolic function and proper catabolism of leucine and isoleucine.[ citation needed ]

The symptoms of biotinidase deficiency (and dietary deficiency of biotin) can be quite severe. A 2004 case study from Metametrix [5] detailed the effects of biotin deficiency, including aggression, cognitive delay, and reduced immune function.

Genetics

Biotinidase deficiency has an autosomal recessive pattern of inheritance. Autorecessive.svg
Biotinidase deficiency has an autosomal recessive pattern of inheritance.

Mutations in the BTD gene cause biotinidase deficiency. Biotinidase is the enzyme that is made by the BTD gene. Many mutations that cause the enzyme to be nonfunctional or to be produced at extremely low levels have been identified. Biotin is a vitamin that is chemically bound to proteins. (Most vitamins are only loosely associated with proteins.) Without biotinidase activity, the vitamin biotin cannot be separated from foods and therefore cannot be used by the body. Another function of the biotinidase enzyme is to recycle biotin from enzymes that are important in metabolism (processing of substances in cells). When biotin is lacking, specific enzymes called carboxylases cannot process certain proteins, fats, or carbohydrates. Specifically, two essential branched-chain amino acids (leucine and isoleucine) are metabolized differently.[ citation needed ]

Individuals lacking functional biotinidase enzymes can still have normal carboxylase activity if they ingest adequate amounts of biotin. The standard treatment regimen calls for 5–10 mg of biotin per day. [6]

Biotinidase deficiency is inherited in an autosomal recessive pattern, which means the defective gene is located on an autosome, and two copies of the defective gene - one from each parent - must be inherited for a person to be affected by the disorder. The parents of a child with an autosomal recessive disorder are usually not affected by the disorder, but are carriers of one copy of the defective gene. If both parents are carriers for the biotinidase deficiency, there is a 25% chance that their child will be born with it, a 50% chance the child will be a carrier, and a 25% chance the child will be unaffected.[ citation needed ]

The chromosomal locus is at 3p25. The BTD gene has four exons of lengths 79 bp, 265 bp, 150 bp and 1502 bp, respectively. There are at least 21 different mutations that have been found to lead to biotinidase deficiency. The most common mutations in severe biotinidase deficiency (<10% normal enzyme activity) are: p. Cys33PhefsX36, p.Gln456His, p.Arg538Cys, p.Asp444His, and p.[Ala171Thr;Asp444His]. Almost all individuals with partial biotinidase deficiency (10-30% enzyme activity) have the mutation p.Asp444His in one allele of the BTD gene in combination with a second allele. [7]

Pathophysiology

Symptoms of the deficiency are caused by the inability to reuse biotin molecules that are needed for cell growth, production of fatty acids and the metabolism of fats and amino acids. If left untreated, the symptoms can lead to later problems such as comas or death. Unless treatment is administered on a regular basis, symptoms can return at any point during the lifespan.[ citation needed ]

Diagnosis

Biotinidase deficiency can be found by genetic testing. This is often done at birth as part of newborn screening in several states throughout the United States. Results are found through testing a small amount of blood gathered through a heel prick of the infant. As not all states require that this test be done, it is often skipped in those where such testing is not required. Biotinidase deficiency can also be found by sequencing the BTD gene, particularly in those with a family history or known familial gene mutation.[ citation needed ]

Treatment

Treatment is possible but unless continued daily, problems may arise. Currently, this is done through supplementation of 5–10 mg of oral biotin a day. If symptoms have begun to show, standard treatments can take care of them, such as hearing aids for poor hearing.[ citation needed ]

Epidemiology

Based on the results of worldwide screening of biotinidase deficiency in 1991, the incidence of the disorder is:[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Phenylketonuria</span> Amino acid metabolic disorder

Phenylketonuria (PKU) is an inborn error of metabolism that results in decreased metabolism of the amino acid phenylalanine. Untreated PKU can lead to intellectual disability, seizures, behavioral problems, and mental disorders. It may also result in a musty smell and lighter skin. A baby born to a mother who has poorly treated PKU may have heart problems, a small head, and low birth weight.

<span class="mw-page-title-main">Biotin</span> Chemical compound (vitamin B7)

Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins. It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids. The name biotin, borrowed from the German Biotin, derives from the Ancient Greek word βίοτος (bíotos; 'life') and the suffix "-in" (a suffix used in chemistry usually to indicate 'forming'). Biotin appears as a white, needle-like crystalline solid.

<span class="mw-page-title-main">Galactosemia</span> Medical condition

Galactosemia is a rare genetic metabolic disorder that affects an individual's ability to metabolize the sugar galactose properly. Galactosemia follows an autosomal recessive mode of inheritance that confers a deficiency in an enzyme responsible for adequate galactose degradation.

<span class="mw-page-title-main">Methylmalonic acidemias</span> Medical condition

Methylmalonic acidemias, also called methylmalonic acidurias, are a group of inherited metabolic disorders, that prevent the body from properly breaking down proteins and fats. This leads to a buildup of a toxic level of methylmalonic acid in body liquids and tissues. Due to the disturbed branched-chain amino acids (BCAA) metabolism, they are among the classical organic acidemias.

<span class="mw-page-title-main">Glycogen storage disease type II</span> Medical condition

Glycogen storage disease type II(GSD-II), also called Pompe disease, and formerly known as GSD-IIa or Limb–girdle muscular dystrophy2V, is an autosomal recessive metabolic disorder which damages muscle and nerve cells throughout the body. It is caused by an accumulation of glycogen in the lysosome due to deficiency of the lysosomal acid alpha-glucosidase enzyme (GAA). The inability to breakdown glycogen within the lysosomes of cells leads to progressive muscle weakness throughout the body and affects various body tissues, particularly in the heart, skeletal muscles, liver and the nervous system.

<span class="mw-page-title-main">Isovaleric acidemia</span> Medical condition disrupting normal metabolism

Isovaleric acidemia is a rare autosomal recessive metabolic disorder which disrupts or prevents normal metabolism of the branched-chain amino acid leucine. It is a classical type of organic acidemia.

<span class="mw-page-title-main">Maple syrup urine disease</span> Autosomal recessive metabolic disorder

Maple syrup urine disease (MSUD) is a rare, inherited metabolic disorder that affects the body’s ability to metabolize amino acids due to a deficiency in the activity of the branched-chain alpha-ketoacid dehydrogenase (BCKAD) complex. It particularly affects the metabolism of amino acids- leucine, isoleucine, and valine. With MSUD, the body is not able to properly break down these amino acids, therefore leading to the amino acids to build up in urine and become toxic. The condition gets its name from the distinctive sweet odor of affected infants' urine and earwax due to the buildup of these amino acids.

<span class="mw-page-title-main">Holocarboxylase synthetase deficiency</span> Medical condition

Holocarboxylase synthetase deficiency is an inherited metabolic disorder in which the body is unable to use the vitamin biotin effectively. This disorder is classified as a multiple carboxylase deficiency, a group of disorders characterized by impaired activity of certain enzymes that depend on biotin. Symptoms are very similar to biotinidase deficiency and treatment – large doses of biotin – is also the same.

<span class="mw-page-title-main">Tyrosinemia</span> Medical condition

Tyrosinemia or tyrosinaemia is an error of metabolism, usually inborn, in which the body cannot effectively break down the amino acid tyrosine. Symptoms of untreated tyrosinemia include liver and kidney disturbances. Without treatment, tyrosinemia leads to liver failure. Today, tyrosinemia is increasingly detected on newborn screening tests before any symptoms appear. With early and lifelong management involving a low-protein diet, special protein formula, and sometimes medication, people with tyrosinemia develop normally, are healthy, and live normal lives.

<span class="mw-page-title-main">Tetrahydrobiopterin deficiency</span> Medical condition

Tetrahydrobiopterin deficiency (THBD, BH4D) is a rare metabolic disorder that increases the blood levels of phenylalanine. Phenylalanine is an amino acid obtained normally through the diet, but can be harmful if excess levels build up, causing intellectual disability and other serious health problems. In healthy individuals, it is metabolised (hydroxylated) into tyrosine, another amino acid, by phenylalanine hydroxylase. However, this enzyme requires tetrahydrobiopterin as a cofactor and thus its deficiency slows phenylalanine metabolism.

Holocarboxylase synthetase ), also known as protein—biotin ligase, is a family of enzymes. This enzyme is important for the effective use of biotin, a B vitamin found in foods such as liver, egg yolks, and milk. In many of the body's tissues, holocarboxylase synthetase activates other specific enzymes by attaching biotin to them. These carboxylases are involved in many critical cellular functions, including the production and breakdown of proteins, fats, and carbohydrates.

<span class="mw-page-title-main">3-Methylcrotonyl-CoA carboxylase deficiency</span> Medical condition

3-Methylcrotonyl-CoA carboxylase deficiency also known as 3-Methylcrotonylglycinuria is an inborn error of leucine metabolism and is inherited through an autosomal recessive fashion. 3-Methylcrotonyl-CoA carboxylase deficiency is caused by mutations in the MCCC1 gene, formerly known as MMCA, or the MCCC2 gene, formerly known as MCCB. MCCC1 encodes the a-subunits of 3-methylcrotonyl-CoA carboxylase while MCCC2 encodes the b-subunits. The clinical presentation of 3-Methylcrotonyl-CoA carboxylase deficiency is varied, even within members of the same family.

Pyruvate carboxylase deficiency is an inherited disorder that causes lactic acid to accumulate in the blood. High levels of these substances can damage the body's organs and tissues, particularly in the nervous system. Pyruvate carboxylase deficiency is a rare condition, with an estimated incidence of 1 in 250,000 births worldwide. Type A of the disease appears to be much more common in some Algonkian Indian tribes in eastern Canada, while the type B disease is more present in European populations.

Methylcrotonyl CoA carboxylase is a biotin-requiring enzyme located in the mitochondria. MCC uses bicarbonate as a carboxyl group source to catalyze the carboxylation of a carbon adjacent to a carbonyl group performing the fourth step in processing leucine, an essential amino acid.

Biotinidase, also known as biotinase, is an enzyme that in humans is encoded by the BTD gene.

<span class="mw-page-title-main">ACADSB</span> Protein-coding gene in the species Homo sapiens

ACADSB is a human gene that encodes short/branched chain specific acyl-CoA dehydrogenase (SBCAD), an enzyme in the acyl CoA dehydrogenase family.

<span class="mw-page-title-main">Galactose-1-phosphate uridylyltransferase deficiency</span> Medical condition

Galactose-1-phosphate uridylyltransferase deficiency(classic galactosemia) is the most common type of galactosemia, an inborn error of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridylyltransferase. It is an autosomal recessive metabolic disorder that can cause liver disease and death if untreated. Treatment of galactosemia is most successful if initiated early and includes dietary restriction of lactose intake. Because early intervention is key, galactosemia is included in newborn screening programs in many areas. On initial screening, which often involves measuring the concentration of galactose in blood, classic galactosemia may be indistinguishable from other inborn errors of galactose metabolism, including galactokinase deficiency and galactose epimerase deficiency. Further analysis of metabolites and enzyme activities are needed to identify the specific metabolic error.

<span class="mw-page-title-main">Biotin deficiency</span> Medical condition

Biotin deficiency is a nutritional disorder which can become serious, even fatal, if allowed to progress untreated. It can occur in people of any age, ancestry, or of either sex. Biotin is part of the B vitamin family. Biotin deficiency rarely occurs among healthy people because the daily requirement of biotin is low, many foods provide adequate amounts of it, intestinal bacteria synthesize small amounts of it, and the body effectively scavenges and recycles it in the kidneys during production of urine.

Multiple carboxylase deficiency is a form of metabolic disorder involving failures of carboxylation enzymes.

Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare disease that affects the nervous system, particularly the basal ganglia in the brain. It is a treatable neurometabolic disorder with autosomal recessive inheritance. First described in 1998 and then genetically distinguished in 2005, the disease is characterized by progressive brain damage that, if left untreated, can lead to coma and/or death. Commonly observed in individuals with BTBGD is recurring subacute encephalopathy along with confusion, seizures, and disordered movement (hypokinesia).

References

  1. "Biotinidase Deficiency". NORD. Retrieved 18 February 2023.
  2. 1 2 Wolf, Barry; Norrgard, Karen; Pomponio, Robert J.; Mock, Donald M.; Secor Mcvoy, Julie R.; Fleischhauer, Kristin; Shapiro, Steven; Blitzer, Miriam G.; Hymes, Jeanne (1997). "Profound biotinidase deficiency in two asymptomatic adults". American Journal of Medical Genetics. 73 (1): 5–9. doi:10.1002/(SICI)1096-8628(19971128)73:1<5::AID-AJMG2>3.0.CO;2-U. PMID   9375914.
  3. 1 2 3 McVoy, Julie R. Secor; Levy, Harvey L.; Lawler, Michael; Schmidt, Michael A.; Ebers, Douglas D.; Hart, Suzanne; Pettit, Denise Dove; Blitzer, Miriam G.; Wolf, Barry (1990). "Partial biotinidase deficiency: Clinical and biochemical features". The Journal of Pediatrics. 116 (1): 78–83. doi:10.1016/S0022-3476(05)81649-X. PMID   2295967.
  4. Möslinger, Dorothea; Mühl, Adolf; Suormala, Terttu; Baumgartner, Regula; Stöckler-Ipsiroglu, Sylvia (2003). "Molecular characterisation and neuropsychological outcome of 21 patients with profound biotinidase deficiency detected by newborn screening and family studies". European Journal of Pediatrics. 162: S46–9. doi:10.1007/s00431-003-1351-3. PMID   14628140. S2CID   6490712.
  5. "Biotin & Detoxification Needs in Cognitively Delayed Adult - Metametrix Learning Center". Archived from the original on 2013-10-19. Retrieved 2011-06-06.
  6. Wolf, Barry (2011). "Biotinidase Deficiency". In Pagon, Roberta A; Bird, Thomas D; Dolan, Cynthia R; Stephens, Karen; et al. (eds.). GeneReviews. University of Washington, Seattle. PMID   20301497.[ page needed ]
  7. Biotinidase Deficiency (Report). Retrieved May 19, 2011.

Further reading

PD-icon.svg This article incorporates public domain material from Genetics Home Reference. United States National Library of Medicine.