The Sznajd model or United we stand, divided we fall (USDF) model is a sociophysics model introduced in 2000 [1] to gain fundamental understanding about opinion dynamics. The Sznajd model implements a phenomenon called social validation and thus extends the Ising spin model. In simple words, the model states:
Statistical mechanics |
---|
For simplicity, one assumes that each individual has an opinion Si which might be Boolean ( for no, for yes) in its simplest formulation, which means that each individual either agrees or disagrees to a given question.
In the original 1D-formulation, each individual has exactly two neighbors just like beads on a bracelet. At each time step a pair of individual and is chosen at random to change their nearest neighbors' opinion (or: Ising spins) and according to two dynamical rules:
In a closed (1 dimensional) community, two steady states are always reached, namely complete consensus (which is called ferromagnetic state in physics) or stalemate (the antiferromagnetic state). Furthermore, Monte Carlo simulations showed that these simple rules lead to complicated dynamics, in particular to a power law in the decision time distribution with an exponent of -1.5. [2]
The final (antiferromagnetic) state of alternating all-on and all-off is unrealistic to represent the behavior of a community. It would mean that the complete population uniformly changes their opinion from one time step to the next. For this reason an alternative dynamical rule was proposed. One possibility is that two spins and change their nearest neighbors according to the two following rules: [3]
In recent years, statistical physics has been accepted as modeling framework for phenomena outside the traditional physics. Fields as econophysics or sociophysics formed, and many quantitative analysts in finance are physicists. The Ising model in statistical physics has been a very important step in the history of studying collective (critical) phenomena. The Sznajd model is a simple but yet important variation of prototypical Ising system. [4]
In 2007, Katarzyna Sznajd-Weron has been recognized by the Young Scientist Award for Socio- and Econophysics of the Deutsche Physikalische Gesellschaft (German Physical Society) for an outstanding original contribution using physical methods to develop a better understanding of socio-economic problems. [5]
The Sznajd model belongs to the class of binary-state dynamics on a networks also referred to as Boolean networks. This class of systems includes the Ising model, the voter model and the q-voter model, the Bass diffusion model, threshold models and others. [6] The Sznajd model can be applied to various fields:
Spintronics, also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.
In condensed matter physics, a spin glass is a magnetic state characterized by randomness, besides cooperative behavior in freezing of spins at a temperature called "freezing temperature" Tf. In ferromagnetic solids, component atoms' magnetic spins all align in the same direction. Spin glass when contrasted with a ferromagnet is defined as "disordered" magnetic state in which spins are aligned randomly or without a regular pattern and the couplings too are random.
The Ising model, named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states. The spins are arranged in a graph, usually a lattice, allowing each spin to interact with its neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different structural phases. The model allows the identification of phase transitions as a simplified model of reality. The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase transition.
In physics, critical phenomena is the collective name associated with the physics of critical points. Most of them stem from the divergence of the correlation length, but also the dynamics slows down. Critical phenomena include scaling relations among different quantities, power-law divergences of some quantities described by critical exponents, universality, fractal behaviour, and ergodicity breaking. Critical phenomena take place in second order phase transitions, although not exclusively.
Ernst Ising was a German physicist, who is best remembered for the development of the Ising model. He was a professor of physics at Bradley University until his retirement in 1976.
In statistical mechanics, the Potts model, a generalization of the Ising model, is a model of interacting spins on a crystalline lattice. By studying the Potts model, one may gain insight into the behaviour of ferromagnets and certain other phenomena of solid-state physics. The strength of the Potts model is not so much that it models these physical systems well; it is rather that the one-dimensional case is exactly solvable, and that it has a rich mathematical formulation that has been studied extensively.
In condensed matter physics, the term geometrical frustration refers to a phenomenon where atoms tend to stick to non-trivial positions or where, on a regular crystal lattice, conflicting inter-atomic forces lead to quite complex structures. As a consequence of the frustration in the geometry or in the forces, a plenitude of distinct ground states may result at zero temperature, and usual thermal ordering may be suppressed at higher temperatures. Much studied examples are amorphous materials, glasses, or dilute magnets.
The Kramers–Wannier duality is a symmetry in statistical physics. It relates the free energy of a two-dimensional square-lattice Ising model at a low temperature to that of another Ising model at a high temperature. It was discovered by Hendrik Kramers and Gregory Wannier in 1941. With the aid of this duality Kramers and Wannier found the exact location of the critical point for the Ising model on the square lattice.
Spin pumping is the dynamical generation of pure spin current by the coherent precession of magnetic moments, which can efficiently inject spin from a magnetic material into an adjacent non-magnetic material. The non-magnetic material usually hosts the spin Hall effect that can convert the injected spin current into a charge voltage easy to detect. A spin pumping experiment typically requires electromagnetic irradiation to induce magnetic resonance, which converts energy and angular momenta from electromagnetic waves to magnetic dynamics and then to electrons, enabling the electronic detection of electromagnetic waves. The device operation of spin pumping can be regarded as the spintronic analog of a battery.
In solid-state physics, the t-J model is a model first derived by Józef Spałek to explain antiferromagnetic properties of Mott insulators, taking into account experimental results about the strength of electron-electron repulsion in these materials.
The Landau–Zener formula is an analytic solution to the equations of motion governing the transition dynamics of a two-state quantum system, with a time-dependent Hamiltonian varying such that the energy separation of the two states is a linear function of time. The formula, giving the probability of a diabatic transition between the two energy states, was published separately by Lev Landau, Clarence Zener, Ernst Stueckelberg, and Ettore Majorana, in 1932.
Ferromagnetic superconductors are materials that display intrinsic coexistence of ferromagnetism and superconductivity. They include UGe2, URhGe, and UCoGe. Evidence of ferromagnetic superconductivity was also reported for ZrZn2 in 2001, but later reports question these findings. These materials exhibit superconductivity in proximity to a magnetic quantum critical point.
The quantum rotor model is a mathematical model for a quantum system. It can be visualized as an array of rotating electrons which behave as rigid rotors that interact through short-range dipole-dipole magnetic forces originating from their magnetic dipole moments. The model differs from similar spin-models such as the Ising model and the Heisenberg model in that it includes a term analogous to kinetic energy.
The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order (first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.
Dynamical mean-field theory (DMFT) is a method to determine the electronic structure of strongly correlated materials. In such materials, the approximation of independent electrons, which is used in density functional theory and usual band structure calculations, breaks down. Dynamical mean-field theory, a non-perturbative treatment of local interactions between electrons, bridges the gap between the nearly free electron gas limit and the atomic limit of condensed-matter physics.
In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order.
Quantum simulators permit the study of a quantum system in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems. Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems.
Social physics or sociophysics is a field of science which uses mathematical tools inspired by physics to understand the behavior of human crowds. In a modern commercial use, it can also refer to the analysis of social phenomena with big data.
Magnetic 2D materials or magnetic van der Waals materials are two-dimensional materials that display ordered magnetic properties such as antiferromagnetism or ferromagnetism. After the discovery of graphene in 2004, the family of 2D materials has grown rapidly. There have since been reports of several related materials, all except for magnetic materials. But since 2016 there have been numerous reports of 2D magnetic materials that can be exfoliated with ease just like graphene.
Anirban Chakraborti is an Indian physicist and professor of econophysics at the School of Computational and Integrative Sciences at Jawaharlal Nehru University in New Delhi. Anirban Chakraborti has published work mainly in the fields of econophysics and data science.