TLN2

Last updated
TLN2
Identifiers
Aliases TLN2 , ILWEQ, talin 2
External IDs OMIM: 607349 MGI: 1917799 HomoloGene: 56692 GeneCards: TLN2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_015059
NM_001394547

NM_001081242
NM_027458

RefSeq (protein)

NP_055874

Location (UCSC) Chr 15: 62.39 – 62.84 Mb Chr 9: 67.12 – 67.47 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Talin-2 is a protein in humans that is encoded by the TLN2 gene. It belongs to the talin protein family. This gene encodes a protein related to talin-1, a cytoskeletal protein that plays a significant role in the assembly of actin filaments. Talin-2 is expressed at high levels in cardiac muscle and functions to provide linkages between the extracellular matrix and actin cytoskeleton at costamere structures to transduce force laterally. [5]

Contents

Structure

Human talin-2 is 271.4 kDa and 2542 amino acids in length. [6] The size of talin-2 protein is similar to talin-1, and is relatively similar (74% identity, 86% similarity); the size of the talin-2 gene (200 kb) is however much larger than that of talin-1 (30 kb), due to differences in intron sizes. [7] Talin-2 mRNA is expressed in multiple tissues, including cardiac muscle, mouse embryonic stem cells, brain, lung, skeletal muscle, kidney and testis; however expression is highest in cardiac muscle. [7] [8] [9] [10] A detailed analysis of the TLN2 gene revealed that the alternative splicing of TLN2 is complex and encodes multiple mRNA transcripts and protein isoforms. Studies revealed a promoter associated with a CpG island that accounts for most of the TLN2 expression in adult tissues. This promoter is separated from the first coding exon by approximately > 200 kb of alternatively spliced noncoding exons. The testis and kidney talin-2 isoforms lack the N-terminal 50% of the protein, and evidence suggests that this is the isoform expressed in elongating spermatids. [11] Talin is also post-translationally modified via calpain 2-mediated cleavage, which may target it for ubiquitin-proteasome-mediated degradation and turnover of associated cell adhesion structures. [12]

Function

The expression of talin-2 in striated muscle is developmentally regulated. Undifferentiated myoblasts primarily express talin-1, and both mRNA and protein expression of talin-2 is upregulated during differentiation; ectopic expression of talin-2 in undifferentiated myoblasts dysregulates the actin cytoskeleton, demonstrating that the timing of talin-2 expression during development is critical. In mature cardiomyocytes and skeletal muscle, talin-2 is expressed at costameres and intercalated discs, thus demonstrating that talin2 links integrins and the actin cytoskeleton in stable adhesion complexes involving mature sarcomeres. [10] [13] Talin-2 appears to play a role in skeletal muscle development; specifically, in myoblast fusion, sarcomere assembly, and the integrity of myotendinous junctions. Ablation of both talin isoforms, talin-2 and talin-1 prevented normal myoblast fusion and sarcomere assembly, as well as assembly of integrin adhesion complexes, which was attributed to disrupted interactions between integrins and the actin cytoskeleton. [14] The mRNA expression of talin-2 has been shown to be regulated by the muscle-specific fragile X mental retardation, autosomal homolog 1 (FXR1) protein, which binds talin2 mRNAs directly and represses translation. Knockout of FXR1 upregulates talin-2 protein, which disrupts the architecture of desmosomes and costameres in cardiac muscle. [15]

Talin-2, like talin-1 appears to join ligand-bound integrins and the actin cytoskeleton, which enhances the affinity of integrins for the extracellular matrix and catalyzes focal adhesion-dependent signaling pathways, [16] as well as reinforces the cytoskeletal-integrin structure in response to an applied force. [17] The strength of the interaction between talin and integrin appears to be fine-tuned through differential expression of isoforms in different tissues. The talin-2/β1D-integrin isoforms that are expressed and colocalize in striated muscle form a markedly strong interaction, and a few amino acid deletions in the β1-integrin tail can alter this interaction by 1000-fold. [18]

Talin-2 is found within the neuronal synaptic region in brain tissue, and plays a role in clathrin-mediated endocytosis, coordinating phosphatidylinositol synthesis, and modulating actin dynamics through interactions with PIP kinase type 1γ, the major phosphatidylinositol 4,5-bisphosphate-synthesizing enzyme of the brain. [19]

Clinical significance

In patients with temporal lobe epilepsy, talin-2 protein was detected in cerebrospinal fluid, whereas expression was absent in non-epileptic patients. [20] Furthermore, postencephalitic epilepsy patients that were refractory to drug treatment exhibited markedly elevated levels of talin-2 protein in cerebrospinal fluid and reciprocally decreased levels in serum. [21] These data suggest that talin-2 may prove useful as a biomarker for epilepsy, and may be pathologically linked to this disease.

Studies have also shown that TLN2 is a direct target of miR-132, which is epigenetically silenced in prostate cancer, [22] suggesting that talin-2 may play a role in modulating cell adhesion in prostate cancer.

Interactions

TLN2 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Integrin</span> Instance of a defined set in Homo sapiens with Reactome ID (R-HSA-374573)

Integrins are transmembrane receptors that help cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.

<span class="mw-page-title-main">Actin</span> Family of proteins

Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.

<span class="mw-page-title-main">Cell adhesion</span> Process of cell attachment

Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indirect interaction, where cells attach to surrounding extracellular matrix, a gel-like structure containing molecules released by cells into spaces between them. Cells adhesion occurs from the interactions between cell-adhesion molecules (CAMs), transmembrane proteins located on the cell surface. Cell adhesion links cells in different ways and can be involved in signal transduction for cells to detect and respond to changes in the surroundings. Other cellular processes regulated by cell adhesion include cell migration and tissue development in multicellular organisms. Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer and arthritis. Cell adhesion is also essential for infectious organisms, such as bacteria or viruses, to cause diseases.

<span class="mw-page-title-main">Tropomyosin</span> Protein

Tropomyosin is a two-stranded alpha-helical, coiled coil protein found in many animal and fungal cells. In animals, it is an important component of the muscular system which works in conjunction with troponin to regulate muscle contraction. It is present in smooth and striated muscle tissues, which can be found in various organs and body systems, including the heart, blood vessels, respiratory system, and digestive system. In fungi, tropomyosin is found in cell walls and helps maintain the structural integrity of cells.

<span class="mw-page-title-main">Vinculin</span> Mammalian protein found in Homo sapiens

In mammalian cells, vinculin is a membrane-cytoskeletal protein in focal adhesion plaques that is involved in linkage of integrin adhesion molecules to the actin cytoskeleton. Vinculin is a cytoskeletal protein associated with cell-cell and cell-matrix junctions, where it is thought to function as one of several interacting proteins involved in anchoring F-actin to the membrane.

<span class="mw-page-title-main">Myosin light-chain kinase</span> Class of kinase enzymes

Myosin light-chain kinase also known as MYLK or MLCK is a serine/threonine-specific protein kinase that phosphorylates a specific myosin light chain, namely, the regulatory light chain of myosin II.

<span class="mw-page-title-main">Paxillin</span> Protein-coding gene in the species Homo sapiens

Paxillin is a protein that in humans is encoded by the PXN gene. Paxillin is expressed at focal adhesions of non-striated cells and at costameres of striated muscle cells, and it functions to adhere cells to the extracellular matrix. Mutations in PXN as well as abnormal expression of paxillin protein has been implicated in the progression of various cancers.

Actinin is a microfilament protein. The functional protein is an anti-parallel dimer, which cross-links the thin filaments in adjacent sarcomeres, and therefore coordinates contractions between sarcomeres in the horizontal axis. Alpha-actinin is a part of the spectrin superfamily. This superfamily is made of spectrin, dystrophin, and their homologous and isoforms. In non-muscle cells, it is found by the actin filaments and at the adhesion sites.The lattice like arrangement provides stability to the muscle contractile apparatus. Specifically, it helps bind actin filaments to the cell membrane. There is a binding site at each end of the rod and with bundles of actin filaments.

<span class="mw-page-title-main">Costamere</span> Component of striated muscle cells

The costamere is a structural-functional component of striated muscle cells which connects the sarcomere of the muscle to the cell membrane.

<span class="mw-page-title-main">LIM domain</span> InterPro Domain

LIM domains are protein structural domains, composed of two contiguous zinc fingers, separated by a two-amino acid residue hydrophobic linker. The domain name is an acronym of the three genes in which it was first identified. LIM is a protein interaction domain that is involved in binding to many structurally and functionally diverse partners. The LIM domain appeared in eukaryotes sometime prior to the most recent common ancestor of plants, fungi, amoeba and animals. In animal cells, LIM domain-containing proteins often shuttle between the cell nucleus where they can regulate gene expression, and the cytoplasm where they are usually associated with actin cytoskeletal structures involved in connecting cells together and to the surrounding matrix, such as stress fibers, focal adhesions and adherens junctions.

<span class="mw-page-title-main">Integrin beta 1</span> Mammalian protein found in Homo sapiens

Integrin beta-1 (ITGB1), also known as CD29, is a cell surface receptor that in humans is encoded by the ITGB1 gene. This integrin associates with integrin alpha 1 and integrin alpha 2 to form integrin complexes which function as collagen receptors. It also forms dimers with integrin alpha 3 to form integrin receptors for netrin 1 and reelin. These and other integrin beta 1 complexes have been historically known as very late activation (VLA) antigens.

Talin is a high-molecular-weight cytoskeletal protein concentrated at regions of cell–substratum contact and, in lymphocytes, at cell–cell contacts. Discovered in 1983 by Keith Burridge and colleagues, talin is a ubiquitous cytosolic protein that is found in high concentrations in focal adhesions. It is capable of linking integrins to the actin cytoskeleton either directly or indirectly by interacting with vinculin and α-actinin.

<span class="mw-page-title-main">PTK2</span> Protein-coding gene in humans

PTK2 protein tyrosine kinase 2 (PTK2), also known as focal adhesion kinase (FAK), is a protein that, in humans, is encoded by the PTK2 gene. PTK2 is a focal adhesion-associated protein kinase involved in cellular adhesion and spreading processes. It has been shown that when FAK was blocked, breast cancer cells became less metastatic due to decreased mobility.

<span class="mw-page-title-main">ROCK1</span> Protein

ROCK1 is a protein serine/threonine kinase also known as rho-associated, coiled-coil-containing protein kinase 1. Other common names are ROKβ and P160ROCK. ROCK1 is a major downstream effector of the small GTPase RhoA and is a regulator of the actomyosin cytoskeleton which promotes contractile force generation. ROCK1 plays a role in cancer and in particular cell motility, metastasis, and angiogenesis.

<span class="mw-page-title-main">Alpha-actinin-1</span> Protein-coding gene in the species Homo sapiens

Alpha-actinin-1 is a protein that in humans is encoded by the ACTN1 gene.

<span class="mw-page-title-main">Alpha-actinin-2</span> Protein-coding gene in the species Homo sapiens

Alpha-actinin-2 is a protein which in humans is encoded by the ACTN2 gene. This gene encodes an alpha-actinin isoform that is expressed in both skeletal and cardiac muscles and functions to anchor myofibrillar actin thin filaments and titin to Z-discs.

<span class="mw-page-title-main">TLN1</span> Protein-coding gene in the species Homo sapiens

Talin-1 is a protein that in humans is encoded by the TLN1 gene. Talin-1 is ubiquitously expressed, and is localized to costamere structures in cardiac and skeletal muscle cells, and to focal adhesions in smooth muscle and non-muscle cells. Talin-1 functions to mediate cell-cell adhesion via the linkage of integrins to the actin cytoskeleton and in the activation of integrins. Altered expression of talin-1 has been observed in patients with heart failure, however no mutations in TLN1 have been linked with specific diseases.

Rap1 is a small GTPase, which are small cytosolic proteins that act like cellular switches and are vital for effective signal transduction. There are two isoforms of the Rap1 protein, each encoded by a separate gene, RAP1A and RAP1B. Rap1 belongs to Ras-related protein family.

<span class="mw-page-title-main">FERMT3</span> Protein-coding gene in the species Homo sapiens

Fermitin family homolog 3) (FERMT3), also known as kindlin-3 (KIND3), MIG2-like protein (MIG2B), or unc-112-related protein 2 (URP2) is a protein that in humans is encoded by the FERMT3 gene. The kindlin family of proteins, member of the B4.1 superfamily, comprises three conserved protein homologues, kindlin 1, 2, and 3. They each contain a bipartite FERM domain comprising four subdomains F0, F1, F2, and F3 that show homology with the FERM head (H) domain of the cytoskeletal Talin protein. Kindlins have been linked to Kindler syndrome, leukocyte adhesion deficiency, cancer and other acquired human diseases. They are essential in the organisation of focal adhesions that mediate cell-extracellular matrix junctions and are involved in other cellular compartments that control cell-cell contacts and nucleus functioning. Therefore, they are responsible for cell to cell crosstalk via cell-cell contacts and integrin mediated cell adhesion through focal adhesion proteins and as specialised adhesion structures of hematopoietic cells they are also present in podosome's F actin surrounding ring structure. Isoform 2 may act as a repressor of NF-kappa-B and apoptosis

<span class="mw-page-title-main">Calponin 2</span> Protein-coding gene in the species Homo sapiens

Calponin 2 is a protein that in humans is encoded by the CNN2 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000171914 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000052698 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Talin 2".
  6. "Protein sequence of human TLN2 (Uniprot ID: Q9Y4G6)". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). Archived from the original on 9 July 2015. Retrieved 8 July 2015.
  7. 1 2 Monkley SJ, Pritchard CA, Critchley DR (Sep 2001). "Analysis of the mammalian talin2 gene TLN2". Biochemical and Biophysical Research Communications. 286 (5): 880–5. doi:10.1006/bbrc.2001.5497. PMID   11527381.
  8. Praekelt U, Kopp PM, Rehm K, Linder S, Bate N, Patel B, Debrand E, Manso AM, Ross RS, Conti F, Zhang MZ, Harris RC, Zent R, Critchley DR, Monkley SJ (Mar 2012). "New isoform-specific monoclonal antibodies reveal different sub-cellular localisations for talin1 and talin2". European Journal of Cell Biology. 91 (3): 180–91. doi:10.1016/j.ejcb.2011.12.003. PMC   3629562 . PMID   22306379.
  9. Chen NT, Lo SH (Nov 2005). "The N-terminal half of talin2 is sufficient for mouse development and survival". Biochemical and Biophysical Research Communications. 337 (2): 670–6. doi:10.1016/j.bbrc.2005.09.100. PMID   16202389.
  10. 1 2 Senetar MA, Moncman CL, McCann RO (Mar 2007). "Talin2 is induced during striated muscle differentiation and is targeted to stable adhesion complexes in mature muscle". Cell Motility and the Cytoskeleton. 64 (3): 157–73. doi:10.1002/cm.20173. PMID   17183545.
  11. Debrand E, El Jai Y, Spence L, Bate N, Praekelt U, Pritchard CA, Monkley SJ, Critchley DR (Mar 2009). "Talin 2 is a large and complex gene encoding multiple transcripts and protein isoforms". The FEBS Journal. 276 (6): 1610–28. doi:10.1111/j.1742-4658.2009.06893.x. PMC   2702505 . PMID   19220457.
  12. Bate N, Gingras AR, Bachir A, Horwitz R, Ye F, Patel B, Goult BT, Critchley DR (2012). "Talin contains a C-terminal calpain2 cleavage site important in focal adhesion dynamics". PLOS ONE. 7 (4): e34461. Bibcode:2012PLoSO...734461B. doi: 10.1371/journal.pone.0034461 . PMC   3319578 . PMID   22496808.
  13. Manso AM, Li R, Monkley SJ, Cruz NM, Ong S, Lao DH, Koshman YE, Gu Y, Peterson KL, Chen J, Abel ED, Samarel AM, Critchley DR, Ross RS (Feb 2013). "Talin1 has unique expression versus talin 2 in the heart and modifies the hypertrophic response to pressure overload". The Journal of Biological Chemistry. 288 (6): 4252–64. doi: 10.1074/jbc.M112.427484 . PMC   3567677 . PMID   23266827.
  14. Conti FJ, Monkley SJ, Wood MR, Critchley DR, Müller U (Nov 2009). "Talin 1 and 2 are required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions". Development. 136 (21): 3597–606. doi:10.1242/dev.035857. PMC   2761109 . PMID   19793892.
  15. Whitman SA, Cover C, Yu L, Nelson DL, Zarnescu DC, Gregorio CC (Jul 2011). "Desmoplakin and talin2 are novel mRNA targets of fragile X-related protein-1 in cardiac muscle". Circulation Research. 109 (3): 262–71. doi:10.1161/CIRCRESAHA.111.244244. PMC   3163600 . PMID   21659647.
  16. Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP (Sep 2008). "Talin depletion reveals independence of initial cell spreading from integrin activation and traction". Nature Cell Biology. 10 (9): 1062–8. doi:10.1038/ncb1765. PMC   2746969 . PMID   19160486.
  17. Roca-Cusachs P, Gauthier NC, Del Rio A, Sheetz MP (Sep 2009). "Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction". Proceedings of the National Academy of Sciences of the United States of America. 106 (38): 16245–50. doi: 10.1073/pnas.0902818106 . PMC   2752568 . PMID   19805288.
  18. Anthis NJ, Wegener KL, Critchley DR, Campbell ID (Dec 2010). "Structural diversity in integrin/talin interactions". Structure. 18 (12): 1654–66. doi:10.1016/j.str.2010.09.018. PMC   3157975 . PMID   21134644.
  19. Morgan JR, Di Paolo G, Werner H, Shchedrina VA, Pypaert M, Pieribone VA, De Camilli P (Oct 2004). "A role for talin in presynaptic function". The Journal of Cell Biology. 167 (1): 43–50. doi:10.1083/jcb.200406020. PMC   2172527 . PMID   15479735.
  20. Xiao F, Chen D, Lu Y, Xiao Z, Guan LF, Yuan J, Wang L, Xi ZQ, Wang XF (Feb 2009). "Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy". Brain Research. 1255: 180–9. doi:10.1016/j.brainres.2008.12.008. PMID   19109932. S2CID   41644337.
  21. Xiao Z, Shen L, Chen D, Wang L, Xi Z, Xiao F, Wang X (Sep 2010). "Talin 2 concentrations in cerebrospinal fluid in patients with epilepsy". Clinical Biochemistry. 43 (13–14): 1129–32. doi:10.1016/j.clinbiochem.2010.06.015. PMID   20620133.
  22. Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, Croce N, Vandesompele J, Mestdagh P, Finazzi-Agrò E, Levine AJ, Melino G, Bernardini S, Candi E (Jan 2013). "DNA methylation silences miR-132 in prostate cancer". Oncogene. 32 (1): 127–34. doi: 10.1038/onc.2012.14 . PMID   22310291.
  23. Hemmings L, Rees DJ, Ohanian V, Bolton SJ, Gilmore AP, Patel B, Priddle H, Trevithick JE, Hynes RO, Critchley DR (Nov 1996). "Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site". Journal of Cell Science. 109 (11): 2715–26. doi:10.1242/jcs.109.11.2715. hdl: 2381/38298 . PMID   8937989.
  24. Patil S, Jedsadayanmata A, Wencel-Drake JD, Wang W, Knezevic I, Lam SC (Oct 1999). "Identification of a talin-binding site in the integrin beta(3) subunit distinct from the NPLY regulatory motif of post-ligand binding functions. The talin n-terminal head domain interacts with the membrane-proximal region of the beta(3) cytoplasmic tail". The Journal of Biological Chemistry. 274 (40): 28575–83. doi: 10.1074/jbc.274.40.28575 . PMID   10497223.
  25. Calderwood DA, Yan B, de Pereda JM, Alvarez BG, Fujioka Y, Liddington RC, Ginsberg MH (Jun 2002). "The phosphotyrosine binding-like domain of talin activates integrins". The Journal of Biological Chemistry. 277 (24): 21749–58. doi: 10.1074/jbc.M111996200 . PMID   11932255.
  26. Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH (Oct 1999). "The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation". The Journal of Biological Chemistry. 274 (40): 28071–4. doi: 10.1074/jbc.274.40.28071 . PMID   10497155.
  27. Borowsky ML, Hynes RO (Oct 1998). "Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles". The Journal of Cell Biology. 143 (2): 429–42. doi:10.1083/jcb.143.2.429. PMC   2132847 . PMID   9786953.
  28. Wegener KL, Basran J, Bagshaw CR, Campbell ID, Roberts GC, Critchley DR, Barsukov IL (Sep 2008). "Structural basis for the interaction between the cytoplasmic domain of the hyaluronate receptor layilin and the talin F3 subdomain". Journal of Molecular Biology. 382 (1): 112–26. doi:10.1016/j.jmb.2008.06.087. PMID   18638481.
  29. Chen HC, Appeddu PA, Parsons JT, Hildebrand JD, Schaller MD, Guan JL (Jul 1995). "Interaction of focal adhesion kinase with cytoskeletal protein talin". The Journal of Biological Chemistry. 270 (28): 16995–9. doi: 10.1074/jbc.270.28.16995 . PMID   7622520.
  30. Zheng C, Xing Z, Bian ZC, Guo C, Akbay A, Warner L, Guan JL (Jan 1998). "Differential regulation of Pyk2 and focal adhesion kinase (FAK). The C-terminal domain of FAK confers response to cell adhesion". The Journal of Biological Chemistry. 273 (4): 2384–9. doi: 10.1074/jbc.273.4.2384 . PMID   9442086.

Further reading