miR-132 | |
---|---|
Identifiers | |
Symbol | miR-132 |
Rfam | RF00662 |
miRBase family | MIPF0000065 |
NCBI Gene | 406921 |
HGNC | 31516 |
OMIM | 610016 |
Other data | |
RNA type | microRNA |
Domain(s) | Eukaryota; |
PDB structures | PDBe |
In molecular biology miR-132 microRNA is a short non-coding RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms, generally reducing protein levels through the cleavage of mRNAs or the repression of their translation. Several targets for miR-132 have been described, including mediators of neurological development, synaptic transmission, inflammation and angiogenesis.
miR-132 arises from the miR-212/132 cluster located in the intron of a non-coding gene on mouse chromosome 11. The transcription of this cluster was found to be enhanced by the transcription factor CREB (cAMP-response element binding protein). In neuronal cells BDNF (brain derived neurotrophic factor) is known to induce the transcription of this cluster; the pathway is thought to involve the BDNF-mediated activation of ERK1/2, which in turn activates MSK, another kinase enzyme. MSK-mediated phosphorylation of a serine residue on CREB may then enhance production of miR-132. MSK knockout mice still produce miR-132 in response to BDNF, but at a significantly lower level, indicating that there may be an alternative pathway operating. [1] Activators of CREB phosphorylation, for instance forskolin and KSHV binding to endothelial cell targets, can also enhance miR-132 production in vitro. miR-132 levels are increased post-seizure, which strongly suggests a causal relationship between neuronal activation and miR-132 transcription. [2] One example of this phenomenon is in the suprachiasmatic nucleus, where miR-132 is thought be involved in resetting the circadian clock in response to light. [3] Inflammatory mediators such as Lipopolysaccharide (LPS) are also implicated in inducing miR-132 expression.
miR-132 is enriched in neuronal cells. Recognition elements for this miRNA have been identified in a number of cellular mRNAs. One such mRNA is that of p250GAP, a GTPase activating protein linked to neuronal differentiation. miR-132 and its recognition site on p250GAP mRNA are highly conserved among vertebrates, and their interaction is suspected to have a role in vertebrate neurogenesis. By decreasing the levels of p250GAP, miR-132 promotes neuronal outgrowth and sprouting. [4]
Another target for miR-132 is MeCP2, whose mRNA is expressed as a 'long' variant in neuronal cells. This variant contains a recognition element for miR-132 in its extended 3'UTR. miRNA-132 may be involved in a homeostatic mechanism that regulates MeCP2 levels in the brain. MeCP2 increases the levels of BDNF in the brain, which in turn will increase transcription from the miR-212/132 cluster. A rise in miRNA-132 level will then decrease the levels of MeCP2 and restore the balance. Failure to regulate MeCP2 levels is connected to neurological disorders including Rett syndrome. [5]
The role of miR-132 in synaptic function is currently being studied. A BDNF-related increase in miR-132 is thought to bring about an increase in post-synaptic protein levels. [6] miR-132 has been found to associate with Fragile X Mental Retardation Protein FMRP, and may be involved in the selection of mRNAs, including those regulating synaptic function, to undergo translational suppression via an FMRP-dependent mechanism. [7]
miR-132 may also be responsible for limiting inflammation in the brain. A recognition sequence for this miRNA can be found in the mRNA for acetylcholinesterase (AChE), that degrades acetylcholine (ACh). By silencing the expression of AChE, ACh levels rise and inhibit peripheral inflammation. [8]
Outside the brain, miR-132 can also modulate inflammation; transcription is stimulated by LPS and upregulated at a fairly early stage of herpesvirus infection. KSHV infection of endothelial cells, as well as HSV-1 or HCMV infection of monocytes, have been observed to induce this rise. In this instance, the target of translational suppression appears to be p300, a protein that associates with CREB and is an important mediator of antiviral immunity. By decreasing the levels of p300, the expression of IFN-β, ISG15, IL-1β and IL6 is impaired, resulting in the net suppression of antiviral immunity. miR-132 is only transiently induced following infection; the silencing of p300 results in a reduction in CREB-mediated transcription from the miR-212/132 cluster, thus forming a negative feedback loop. [9]
Plasma from patients with rheumatoid arthritis (RA) has been found to contain lower levels of miR-132 compared to samples from healthy individuals. [10] As RA is an autoimmune, inflammatory disease, it is possible that miR-132 helps to regulate inflammation in healthy joints.
Conversely, miR-132 has been implicated in promoting inflammation in adipocytes. The target for RNA silencing in this case is SirT1, a deacetylase enzyme. The p65 subunit of NF-κB is a SirT1 substrate; in the absence of SirT1 activity, NFκB is active, promoting inflammation and the production of the chemokines IL-8 and MCP-1. This process is implicated in the chronic inflammation that may underlie insulin resistance in the obese, and may occur in response to serum deprivation. [11]
miR-132 can induce the proliferation of endothelial cells and has been implicated in neovascularisation. Angiogenic factors such as VEGF and bFGF are CREB activators which could theoretically induce miR-132 production in endothelial cells. Here, the miRNA can silence the expression of p120RasGAP, fixing Ras in a GTP-bound, active conformation so as to induce proliferation. [12] This angiogenic role could implicate miR-132 in oncogenesis, and this miRNA is known to be overexpressed in chronic lymphoblastic leukaemias. [13] miR-132 also comprises part of the recently identified miRNA 'signature' of mammalian osteosarcoma, although a direct role in oncogenesis is yet to be fully described. [14]
MiR-132 has been found to inhibit cardiac pathology in rodents. [15] Overactivation of miR-132 upon various cardiac stress provokes adverse remodeling of the heart tissue that is implicated in the development and progression of heart failure (HF). The inhibition of miR-132 is a valid strategy in the prevention of heart failure progression in hypertrophic heart disease. [16] CDR132L is the first-in-class synthetic antisense oligonucleotide inhibitor targeting miR-132, developed by Cardior Pharmaceuticals in the framework of the therapeutic strategy to bind abnormal levels of miR-132 to hold and reverse the development of detrimental cardiac remodeling. CDR132L is being currently investigated in a Phase 2 HF-REVERT Clinical Trial. [17]
The Angiotensin II receptor type 1 mRNA also undergoes miR-132-mediated silencing. [18] KIAA1211L is also a predicted miR-132 target. [19]
Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products. Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental stimuli, or adapt to new food sources. Virtually any step of gene expression can be modulated, from transcriptional initiation, to RNA processing, and to the post-translational modification of a protein. Often, one gene regulator controls another, and so on, in a gene regulatory network.
Brain-derived neurotrophic factor (BDNF), or abrineurin, is a protein that, in humans, is encoded by the BDNF gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the canonical nerve growth factor (NGF), a family which also includes NT-3 and NT-4/NT-5. Neurotrophic factors are found in the brain and the periphery. BDNF was first isolated from a pig brain in 1982 by Yves-Alain Barde and Hans Thoenen.
CREB-TF is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first described in 1987 as a cAMP-responsive transcription factor regulating the somatostatin gene.
Immediate early genes (IEGs) are genes which are activated transiently and rapidly in response to a wide variety of cellular stimuli. They represent a standing response mechanism that is activated at the transcription level in the first round of response to stimuli, before any new proteins are synthesized. IEGs are distinct from "late response" genes, which can only be activated later, following the synthesis of early response gene products. Thus IEGs have been called the "gateway to the genomic response". The term can describe viral regulatory proteins that are synthesized following viral infection of a host cell, or cellular proteins that are made immediately following stimulation of a resting cell by extracellular signals.
In genetics, a silencer is a DNA sequence capable of binding transcription regulation factors, called repressors. DNA contains genes and provides the template to produce messenger RNA (mRNA). That mRNA is then translated into proteins. When a repressor protein binds to the silencer region of DNA, RNA polymerase is prevented from transcribing the DNA sequence into RNA. With transcription blocked, the translation of RNA into proteins is impossible. Thus, silencers prevent genes from being expressed as proteins.
MECP2 is a gene that encodes the protein MECP2. MECP2 appears to be essential for the normal function of nerve cells. The protein seems to be particularly important for mature nerve cells, where it is present in high levels. The MECP2 protein is likely to be involved in turning off several other genes. This prevents the genes from making proteins when they are not needed. Recent work has shown that MECP2 can also activate other genes. The MECP2 gene is located on the long (q) arm of the X chromosome in band 28 ("Xq28"), from base pair 152,808,110 to base pair 152,878,611.
CCAAT-enhancer-binding proteins is a family of transcription factors composed of six members, named from C/EBPα to C/EBPζ. They promote the expression of certain genes through interaction with their promoters. Once bound to DNA, C/EBPs can recruit so-called co-activators that in turn can open up chromatin structure or recruit basal transcription factors.
Protein c-Fos is a proto-oncogene that is the human homolog of the retroviral oncogene v-fos. It is encoded in humans by the FOS gene. It was first discovered in rat fibroblasts as the transforming gene of the FBJ MSV. It is a part of a bigger Fos family of transcription factors which includes c-Fos, FosB, Fra-1 and Fra-2. It has been mapped to chromosome region 14q21→q31. c-Fos encodes a 62 kDa protein, which forms heterodimer with c-jun, resulting in the formation of AP-1 complex which binds DNA at AP-1 specific sites at the promoter and enhancer regions of target genes and converts extracellular signals into changes of gene expression. It plays an important role in many cellular functions and has been found to be overexpressed in a variety of cancers.
Michael Greenberg is an American neuroscientist who specializes in molecular neurobiology. He served as the Chair of the Department of Neurobiology at Harvard Medical School from 2008 to 2022.
Activity-regulated cytoskeleton-associated protein is a plasticity protein that in humans is encoded by the ARC gene. The gene is believed to derive from a retrotransposon. The protein is found in the neurons of tetrapods and other animals where it can form virus-like capsids that transport RNA between neurons.
The cellular transcription factor CREB helps learning and the stabilization and retrieval of fear-based, long-term memories. This is done mainly through its expression in the hippocampus and the amygdala. Studies supporting the role of CREB in cognition include those that knock out the gene, reduce its expression, or overexpress it.
MiR-155 is a microRNA that in humans is encoded by the MIR155 host gene or MIR155HG. MiR-155 plays a role in various physiological and pathological processes. Exogenous molecular control in vivo of miR-155 expression may inhibit malignant growth, viral infections, and enhance the progression of cardiovascular diseases.
miR-134 is a family of microRNA precursors found in mammals, including humans. MicroRNAs are typically transcribed as ~70 nucleotide precursors and subsequently processed by the Dicer enzyme to give a ~22 nucleotide product. The excised region or, mature product, of the miR-134 precursor is the microRNA mir-134.
While the cellular and molecular mechanisms of learning and memory have long been a central focus of neuroscience, it is only in recent years that attention has turned to the epigenetic mechanisms behind the dynamic changes in gene transcription responsible for memory formation and maintenance. Epigenetic gene regulation often involves the physical marking of DNA or associated proteins to cause or allow long-lasting changes in gene activity. Epigenetic mechanisms such as DNA methylation and histone modifications have been shown to play an important role in learning and memory.
Serine/threonine-protein kinase Sgk1 also known as serum and glucocorticoid-regulated kinase 1 is an enzyme that in humans is encoded by the SGK1 gene.
Epigenetic regulation of neurogenesis is the role that epigenetics plays in the regulation of neurogenesis.
Epigenetics of physical exercise is the study of epigenetic modifications to the cell genome resulting from physical exercise. Environmental factors, including physical exercise, have been shown to have a beneficial influence on epigenetic modifications. Generally, it has been shown that acute and long-term exercise has a significant effect on DNA methylation, an important aspect of epigenetic modifications.
Epigenetics of depression is the study of how epigenetics contribute to depression.
Alcoholism is a chronic disease characterized by trouble controlling the consumption of alcohol, dependence, and withdrawal upon rapid cessation of drinking. According to ARDI reports approximately 88,000 people had alcohol-related deaths in the United States between the years of 2006 and 2010. Furthermore, chronic alcohol use is consistently the third leading cause of death in the United States. In consequence, research has sought to determine the factors responsible for the development and persistence of alcoholism. From this research, several molecular and epigenetic mechanisms have been discovered.