MiR-208

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia
miR-208
Mir-208 SS.png
Conserved secondary structure of miR-208 microRNA precursor
Identifiers
SymbolmiR-208
Alt. SymbolsMIR208
Rfam RF00749
miRBase MI0000251
miRBase family MIPF0000178
NCBI Gene 406990
HGNC 31585
OMIM 611116
RefSeq NR_029595
Other data
RNA typemiRNA
Domain(s) Metazoa
GO 0035195
SO 0001244
Locus Chr. 14 q11.2
PDB structures PDBe

miR-208 is a family of microRNA precursors found in animals, including humans. The ~22  nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer. [1] This sequence then associates with RISC which effects RNA interference. [2]

Contents

In humans, the gene for miR-208 is located in an intron of MYH7. [3]

Function

miR-208 has been deemed a "myomiR" [3] as it is specifically expressed, or found at much higher levels, in cardiac tissue. Other myomiRs include miR-1 and miR-133. [3] miR-208 is thought to be dysregulated in various cardiovascular diseases. [4] [5]

miR-208 functions in cardiomyocytes regulating the production of the myosin heavy chain during development. [3] It also responds to stress and forms part of a hormonal signalling cascade in cardiac cells. [6]

Applications

A preliminary study has shown a potential use in the prognosis of dilated cardiomyopathy. [7] Another application has been suggested as using plasma concentration of miR-208 as a biomarker of damaged cardiac muscle cells. [8]

Related Research Articles

microRNA Small non-coding ribonucleic acid molecule

MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 nucleotides. Found in plants, animals and some viruses, miRNAs are involved in RNA silencing and post-transcriptional regulation of gene expression. miRNAs base-pair to complementary sequences in mRNA molecules, then silence said mRNA molecules by one or more of the following processes:

  1. Cleavage of the mRNA strand into two pieces,
  2. Destabilization of the mRNA by shortening its poly(A) tail, or
  3. Reducing translation of the mRNA into proteins.
<span class="mw-page-title-main">Desmoglein-2</span> Protein found in humans

Desmoglein-2 is a protein that in humans is encoded by the DSG2 gene. Desmoglein-2 is highly expressed in epithelial cells and cardiomyocytes. Desmoglein-2 is localized to desmosome structures at regions of cell-cell contact and functions to structurally adhere adjacent cells together. In cardiac muscle, these regions are specialized regions known as intercalated discs. Mutations in desmoglein-2 have been associated with arrhythmogenic right ventricular cardiomyopathy and familial dilated cardiomyopathy.

mir-192/215 microRNA precursor

The miR-192 microRNA precursor, is a short non-coding RNA gene involved in gene regulation. miR-192 and miR-215 have now been predicted or experimentally confirmed in mouse and human.

mir-133 microRNA precursor family

mir-133 is a type of non-coding RNA called a microRNA that was first experimentally characterised in mice. Homologues have since been discovered in several other species including invertebrates such as the fruitfly Drosophila melanogaster. Each species often encodes multiple microRNAs with identical or similar mature sequence. For example, in the human genome there are three known miR-133 genes: miR-133a-1, miR-133a-2 and miR-133b found on chromosomes 18, 20 and 6 respectively. The mature sequence is excised from the 3' arm of the hairpin. miR-133 is expressed in muscle tissue and appears to repress the expression of non-muscle genes.

mir-1 microRNA precursor family

The miR-1 microRNA precursor is a small micro RNA that regulates its target protein's expression in the cell. microRNAs are transcribed as ~70 nucleotide precursors and subsequently processed by the Dicer enzyme to give products at ~22 nucleotides. In this case the mature sequence comes from the 3' arm of the precursor. The mature products are thought to have regulatory roles through complementarity to mRNA. In humans there are two distinct microRNAs that share an identical mature sequence, and these are called miR-1-1 and miR-1-2.

<span class="mw-page-title-main">TNNT2</span> Protein-coding gene in the species Homo sapiens

Cardiac muscle troponin T (cTnT) is a protein that in humans is encoded by the TNNT2 gene. Cardiac TnT is the tropomyosin-binding subunit of the troponin complex, which is located on the thin filament of striated muscles and regulates muscle contraction in response to alterations in intracellular calcium ion concentration.

<span class="mw-page-title-main">DSC2</span> Protein-coding gene in humans

Desmocollin-2 is a protein that in humans is encoded by the DSC2 gene. Desmocollin-2 is a cadherin-type protein that functions to link adjacent cells together in specialized regions known as desmosomes. Desmocollin-2 is widely expressed, and is the only desmocollin isoform expressed in cardiac muscle, where it localizes to intercalated discs. Mutations in DSC2 have been causally linked to arrhythmogenic right ventricular cardiomyopathy.

<span class="mw-page-title-main">ANKRD1</span> Protein-coding gene in the species Homo sapiens

Ankyrin repeat domain-containing protein 1, or Cardiac ankyrin repeat protein is a protein that in humans is encoded by the ANKRD1 gene also known as CARP. CARP is highly expressed in cardiac and skeletal muscle, and is a transcription factor involved in development and under conditions of stress. CARP has been implicated in several diseases, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and several skeletal muscle myopathies.

mIRN21 Non-coding RNA in the species Homo sapiens

microRNA 21 also known as hsa-mir-21 or miRNA21 is a mammalian microRNA that is encoded by the MIR21 gene.

<span class="mw-page-title-main">MYL7</span> Protein-coding gene in the species Homo sapiens

Atrial Light Chain-2 (ALC-2) also known as Myosin regulatory light chain 2, atrial isoform (MLC2a) is a protein that in humans is encoded by the MYL7 gene. ALC-2 expression is restricted to cardiac muscle atria in healthy individuals, where it functions to modulate cardiac development and contractility. In human diseases, including hypertrophic cardiomyopathy, dilated cardiomyopathy, ischemic cardiomyopathy and others, ALC-2 expression is altered.

miR-155 Non-coding RNA in the species Homo sapiens

MiR-155 is a microRNA that in humans is encoded by the MIR155 host gene or MIR155HG. MiR-155 plays a role in various physiological and pathological processes. Exogenous molecular control in vivo of miR-155 expression may inhibit malignant growth, viral infections, and enhance the progression of cardiovascular diseases.

mir-210 microRNA

In molecular biology mir-210 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

miR-338 Family of brain-specific microRNA precursors

miR-338 is a family of brain-specific microRNA precursors found in mammals, including humans. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer. This sequence then associates with RISC which effects RNA interference.

miR-146 Family of microRNA precursors

miR-146 is a family of microRNA precursors found in mammals, including humans. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer. This sequence then associates with RISC which effects RNA interference.

miR-150 Family of microRNA precursors found in mammals

miR-150 is a family of microRNA precursors found in mammals, including humans. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer. This sequence then associates with RISC which effects RNA interference.

miR-191

miR-191 is a family of microRNA precursors found in mammals, including humans. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer. This sequence then associates with RISC which effects RNA interference.

miR-296

miR-296 is a family of microRNA precursors found in mammals, including humans. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer. This sequence then associates with RISC which effects RNA interference.

<span class="mw-page-title-main">MicroRNA 499a</span> Non-coding RNA in the species Homo sapiens

MicroRNA 499a is a non-coding RNA that in humans is encoded by the MIR499A gene.

mIR141

MicroRNA 141 is a non-coding RNA molecule that in humans is encoded by the MIR141 gene.

miR-324-5p is a microRNA that functions in cell growth, apoptosis, cancer, epilepsy, neuronal differentiation, psychiatric conditions, cardiac disease pathology, and more. As a microRNA, it regulates gene expression through targeting mRNAs. Additionally, miR-324-5p is both an intracellular miRNA, meaning it is commonly found within the microenvironment of the cell, and one of several circulating miRNAs found throughout the body. Its presence throughout the body both within and external to cells may contribute to miR-324-5p's wide array of functions and role in numerous disease pathologies – especially cancer – in various organ systems.

References

  1. Ambros V (December 2001). "microRNAs: tiny regulators with great potential". Cell. 107 (7): 823–6. doi: 10.1016/S0092-8674(01)00616-X . PMID   11779458.
  2. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (November 2005). "Human RISC couples microRNA biogenesis and posttranscriptional gene silencing". Cell. 123 (4): 631–40. doi: 10.1016/j.cell.2005.10.022 . PMID   16271387.
  3. 1 2 3 4 Malizia AP, Wang DZ (Mar–Apr 2011). "MicroRNAs in cardiomyocyte development". Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 3 (2): 183–90. doi:10.1002/wsbm.111. PMC   3058499 . PMID   21305703.
  4. Cai B, Pan Z, Lu Y (2010). "The roles of microRNAs in heart diseases: a novel important regulator". Current Medicinal Chemistry. 17 (5): 407–11. doi:10.2174/092986710790226129. PMID   20015039.(subscription required)
  5. Han M, Toli J, Abdellatif M (May 2011). "MicroRNAs in the cardiovascular system". Current Opinion in Cardiology. 26 (3): 181–9. doi:10.1097/HCO.0b013e328345983d. PMID   21464712. S2CID   205620160.
  6. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (April 2007). "Control of stress-dependent cardiac growth and gene expression by a microRNA". Science. 316 (5824): 575–9. Bibcode:2007Sci...316..575V. doi:10.1126/science.1139089. PMID   17379774. S2CID   1927839.
  7. Satoh M, Minami Y, Takahashi Y, Tabuchi T, Nakamura M (May 2010). "Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy". Journal of Cardiac Failure. 16 (5): 404–10. doi:10.1016/j.cardfail.2010.01.002. PMID   20447577.
  8. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N (November 2009). "Plasma miR-208 as a biomarker of myocardial injury". Clinical Chemistry. 55 (11): 1944–9. doi:10.1373/clinchem.2009.125310. PMID   19696117.

Further reading