Tentaculita

Last updated

Tentaculita
Temporal range: Ordovician–Middle Jurassic
O
S
D
C
P
T
J
K
Pg
N
Early Ordovician to Middle Jurassic (Vinn 2010)
TentaculitidDevonian.jpg
Tentaculitids from the Devonian of Maryland.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Superphylum: Lophotrochozoa (?)
Class: Tentaculita
Boucek, 1964
Taxa of uncertain placement

Tentaculita is an extinct class of uncertain placement ranging from the Early Ordovician to the Middle Jurassic. They were suspension feeders with a near worldwide distribution. For a more thorough discussion, see Tentaculites .

Contents

The presence of perforate septa and "septal necks" has been used to argue for a cephalopod affinity, whereas the shell microstructure, notably the presence of punctae, points to a brachiopod relationship. [5]

Subdivisions

Subclasses
Orders
Genera

Related Research Articles

<span class="mw-page-title-main">Silurian</span> Third period of the Paleozoic Era, 443–419 million years ago

The Silurian is a geologic period and system spanning 24.6 million years from the end of the Ordovician Period, at 443.8 million years ago (Mya), to the beginning of the Devonian Period, 419.2 Mya. The Silurian is the shortest period of the Paleozoic Era. As with other geologic periods, the rock beds that define the period's start and end are well identified, but the exact dates are uncertain by a few million years. The base of the Silurian is set at a series of major Ordovician–Silurian extinction events when up to 60% of marine genera were wiped out.

<span class="mw-page-title-main">Coleoidea</span> Subclass of cephalopods

Coleoidea or Dibranchiata, is one of the two subclasses of cephalopods, containing all the various taxa popularly thought of as "soft-bodied" or "shell-less". Unlike its extant sister group Nautiloidea, whose members have a rigid outer shell for protection, the coleoids have at most an internal shell called cuttlebone or gladius that is used for buoyancy or as muscle anchorage. Some species, notably incirrate octopuses, have lost their cuttlebone altogether, while in some it has been replaced by a chitinous support structure. A unique trait of the group is the ability to edit their own RNA.

<i>Tentaculites</i> Extinct genus of invertebrates

Tentaculites is an extinct genus of conical fossils of uncertain affinity, class Tentaculita, although it is not the only member of the class. It is known from Lower Ordovician to Upper Devonian deposits both as calcitic shells with a brachiopod-like microstructure and carbonaceous 'linings'. The "tentaculites" are also referred to as the styliolinids.

<span class="mw-page-title-main">Bioerosion</span> Erosion of hard substrates by living organisms

Bioerosion describes the breakdown of hard ocean substrates – and less often terrestrial substrates – by living organisms. Marine bioerosion can be caused by mollusks, polychaete worms, phoronids, sponges, crustaceans, echinoids, and fish; it can occur on coastlines, on coral reefs, and on ships; its mechanisms include biotic boring, drilling, rasping, and scraping. On dry land, bioerosion is typically performed by pioneer plants or plant-like organisms such as lichen, and mostly chemical or mechanical in nature.

<span class="mw-page-title-main">Tabulata</span> Order of extinct forms of coral

Tabulata, commonly known as tabulate corals, are an order of extinct forms of coral. They are almost always colonial, forming colonies of individual hexagonal cells known as corallites defined by a skeleton of calcite, similar in appearance to a honeycomb. Adjacent cells are joined by small pores. Their distinguishing feature is their well-developed horizontal internal partitions (tabulae) within each cell, but reduced or absent vertical internal partitions. They are usually smaller than rugose corals, but vary considerably in shape, from flat to conical to spherical.

<span class="mw-page-title-main">Conulariida</span> Order of cnidarians (fossil)

Conulariida are an extinct group of medusozoan cnidarians known from fossils spanning from the latest Ediacaran up until the Late Triassic. They are almost exclusively known from their hard external structures, which were pyramidal in shape and made up of numerous lamellae.

<i>Nematothallus</i> A form genus comprising cuticle-like fossils

Nematothallus is a form genus comprising cuticle-like fossils. Some of its constituents likely represent red algae, whereas others resemble lichens.

<span class="mw-page-title-main">Carbonate hardgrounds</span>

Carbonate hardgrounds are surfaces of synsedimentarily cemented carbonate layers that have been exposed on the seafloor. A hardground is essentially, then, a lithified seafloor. Ancient hardgrounds are found in limestone sequences and distinguished from later-lithified sediments by evidence of exposure to normal marine waters. This evidence can consist of encrusting marine organisms, borings of organisms produced through bioerosion, early marine calcite cements, or extensive surfaces mineralized by iron oxides or calcium phosphates. Modern hardgrounds are usually detected by sounding in shallow water or through remote sensing techniques like side-scan sonar.

<span class="mw-page-title-main">Cornulitida</span> Extinct order of Devonian organisms

Cornulitida is an extinct order of encrusting animals from class Tentaculita, which were common around the globe in the Ordovician to Devonian oceans, and survived until the Carboniferous. Organisms that may be the oldest cornulitids have been found in Cambrian sediments of Jordan.

<span class="mw-page-title-main">Microconchida</span> Extinct order of molluscs

The order Microconchida is a group of small, spirally-coiled, encrusting fossil "worm" tubes from the class Tentaculita found from the Upper Ordovician to the Middle Jurassic (Bathonian) around the world. They have lamellar calcitic shells, usually with pseudopunctae or punctae and a bulb-like origin. Many were long misidentified as the polychaete annelid Spirorbis until studies of shell microstructure and formation showed significant differences. All pre-Cretaceous "Spirorbis" fossils are now known to be microconchids. Their classification at the phylum level is still debated. Most likely they are some form of lophophorate, a group which includes phoronids, bryozoans and brachiopods. Microconchids may be closely related to the other encrusting tentaculitoid tubeworms, such as Anticalyptraea, trypanoporids and cornulitids.

Nematasketum is a nematophyte with internally thickened tubes. It is thought to be terrestrial or freshwater, and seems to be aligned with the fungi.

<i>Anticalyptraea</i>

Anticalyptraea is a fossil genus of encrusting tentaculitoid tubeworms from the Silurian to Devonian of Europe and North America . Anticalyptraea commonly encrust various invertebrate fossils such as stromatoporoids, rugose corals, bryozoans, brachiopods and crinoids, but they can also be common on the hardgrounds.

<i>Chaetosalpinx</i> Trace fossil

Chaetosalpinx is an ichnogenus of bioclaustrations. Chaetosalpinx includes straight to sinuous cavities that are parallel to the host's axis of growth. The cavity is circular to oval in cross-section and it lacks a wall lining or floor-like tabulae. They are common in tabulate and rugose corals from Late Ordovician to Devonian of Europe and North America. They may have been parasites.

<i>Cornulites</i> Genus of cornulitid tubeworms

Cornulites is a genus of cornulitid tubeworms. Their shells have vesicular wall structure, and are both externally and internally annulated. They usually occur as encrusters on various shelly fossils. Their fossils are known from the Middle Ordovician to the Carboniferous.

<i>Conchicolites</i> Fossil genus of tubeworms

Conchicolites is a fossil genus of cornulitid tubeworms. Their shells lack vesicular wall structure and have a smooth lumen. They are externally covered with transverse ridges. Some species have spines. They usually occur as encrusters on various shelly fossils. Their fossils are known from the Late Ordovician to the Devonian.

<i>Septalites</i> Genus of ctenophores

Septalites is a genus of cornulitid tubeworms. Their shells lack vesicular wall structure and have a smooth lumen filled with numerous transverse septa. They are externally covered with transverse ridges. Their fossils are known only from the Silurian of Gotland.

<i>Punctaconchus</i> Genus of molluscs

Punctaconchus is a genus of microconchid tubeworms. It was the last genus of microconchids, and the only genus to exist beyond the Triassic. Their tubes have large pores (punctae) penetrating the tube wall. Tubes lumen is covered by ripplemark−like transverse ridges. Punctaconchus occurs in the Middle Jurassic of England, France and Poland.

Tymbochoos is an extinct genus of encrusting tentaculitoid tubeworms. Tymbochoos has a laminar tube structure and pseudopuncta similar to those of the tentaculitoids. It has previously been interpreted as a Palaeozoic polychaete. The world's oldest build-ups with tube-supported frameworks belong to Tymbochoos sinclairi. They occur in the Ordovician limestones of the Ottawa Valley.

<span class="mw-page-title-main">Olev Vinn</span> Estonian paleontologist (born 1971)

Olev Vinn is Estonian paleobiologist and paleontologist.

<span class="mw-page-title-main">Waukesha Biota</span> Lagerstätte Fossil site in Waukesha County, Wisconsin, U.S.

The Waukesha Biota is an important fossil site located in Waukesha and Franklin, Milwaukee County within the state of Wisconsin. This biota is preserved in certain strata within the Brandon Bridge Formation, which dates to the early Silurian period. It is known for the exceptional preservation of soft-bodied organisms, including many species found nowhere else in rocks of similar age. The site's discovery was announced in 1985, leading to a plethora of discoveries. This biota is one of the few well studied Lagerstättes from the Silurian, making it important in our understanding of the period's biodiversity. Some of the species are not easily classified into known animal groups, showing that much research remains to be done on this site. Other taxa that are normally common in Silurian deposits are rare here, but trilobites are quite common.

References

  1. O. Vinn, M. Isakar (2007). "The tentaculitid affinities of Anticalyptraea from the Silurian of Baltoscandia". Palaeontology. 50: 1385–1390. doi: 10.1111/j.1475-4983.2007.00715.x .
  2. 1 2 N. M. Farsan. 1994. Tentaculiten: Ontogenese, Systematik, Phylogenese, Biostratonomie und Morphologie 547:1-128
  3. O. Vinn, M.-A. Motus (2008). "The earliest endosymbiotic mineralized tubeworms from the Silurian of Podolia, Ukraine". Journal of Paleontology. 82 (2). doi:10.1666/07-056.1.
  4. M. Zatoń, H. Hagdorn, T. Borszcz (2013). "Microconchids of the species Microconchus valvatus (Münster in Goldfuss, 1831) from the Upper Muschelkalk (Middle Triassic) of Germany". Palaeobiodiversity and Palaeoenvironments. 94 (3). doi: 10.1007/s12549-013-0128-6 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Weedon, Michael J. (1990). "Shell structure and affinity of vermiform 'gastropods'". Lethaia. 23 (3): 297–309. doi:10.1111/j.1502-3931.1990.tb01455.x.

Further reading