Thermal contact conductance

Last updated

In physics, thermal contact conductance is the study of heat conduction between solid or liquid bodies in thermal contact. The thermal contact conductance coefficient, , is a property indicating the thermal conductivity, or ability to conduct heat, between two bodies in contact. The inverse of this property is termed thermal contact resistance.

Contents

Definition

Fig. 1: Heat flow between two solids in contact and the temperature distribution. Contact conductance.svg
Fig. 1: Heat flow between two solids in contact and the temperature distribution.

When two solid bodies come in contact, such as A and B in Figure 1, heat flows from the hotter body to the colder body. From experience, the temperature profile along the two bodies varies, approximately, as shown in the figure. A temperature drop is observed at the interface between the two surfaces in contact. This phenomenon is said to be a result of a thermal contact resistance existing between the contacting surfaces. Thermal contact resistance is defined as the ratio between this temperature drop and the average heat flow across the interface. [1]

According to Fourier's law , the heat flow between the bodies is found by the relation:

 

 

 

 

(1)

where is the heat flow, is the thermal conductivity, is the cross sectional area and is the temperature gradient in the direction of flow.

From considerations of energy conservation, the heat flow between the two bodies in contact, bodies A and B, is found as:

 

 

 

 

(2)

One may observe that the heat flow is directly related to the thermal conductivities of the bodies in contact, and , the contact area , and the thermal contact resistance, , which, as previously noted, is the inverse of the thermal conductance coefficient, .

Importance

Most experimentally determined values of the thermal contact resistance fall between 0.000005 and 0.0005 m2 K/W (the corresponding range of thermal contact conductance is 200,000 to 2000 W/m2 K). To know whether the thermal contact resistance is significant or not, magnitudes of the thermal resistances of the layers are compared with typical values of thermal contact resistance. Thermal contact resistance is significant and may dominate for good heat conductors such as metals but can be neglected for poor heat conductors such as insulators. [2] Thermal contact conductance is an important factor in a variety of applications, largely because many physical systems contain a mechanical combination of two materials. Some of the fields where contact conductance is of importance are: [3] [4] [5]

Factors influencing contact conductance

Fig. 2: An enlargement of the interface between two contacting surfaces. The finish quality is exaggerated for the sake of the argument. Solids in contact.svg
Fig. 2: An enlargement of the interface between two contacting surfaces. The finish quality is exaggerated for the sake of the argument.

Thermal contact conductance is a complicated phenomenon, influenced by many factors. Experience shows that the most important ones are as follows:

Contact pressure

For thermal transport between two contacting bodies, such as particles in a granular medium, the contact pressure is the factor of most influence on overall contact conductance. As contact pressure grows, true contact area increases and contact conductance grows (contact resistance becomes smaller). [6]

Since the contact pressure is the most important factor, most studies, correlations and mathematical models for measurement of contact conductance are done as a function of this factor.

The thermal contact resistance of certain sandwich kinds of materials that are manufactured by rolling under high temperatures may sometimes be ignored because the decrease in thermal conductivity between them is negligible.

Interstitial materials

No truly smooth surfaces really exist, and surface imperfections are visible under a microscope. As a result, when two bodies are pressed together, contact is only performed in a finite number of points, separated by relatively large gaps, as can be shown in Fig. 2. Since the actual contact area is reduced, another resistance for heat flow exists. The gases/fluids filling these gaps may largely influence the total heat flow across the interface. The thermal conductivity of the interstitial material and its pressure, examined through reference to the Knudsen number, are the two properties governing its influence on contact conductance, and thermal transport in heterogeneous materials in general. [6]

In the absence of interstitial materials, as in a vacuum, the contact resistance will be much larger, since flow through the intimate contact points is dominant.

Surface roughness, waviness and flatness

One can characterise a surface that has undergone certain finishing operations by three main properties of: roughness, waviness, and fractal dimension. Among these, roughness and fractality are of most importance, with roughness often indicated in terms of a rms value, and surface fractality denoted generally by Df. The effect of surface structures on thermal conductivity at interfaces is analogous to the concept of electrical contact resistance, also known as ECR, involving contact patch restricted transport of phonons rather than electrons.

Surface deformations

When the two bodies come in contact, surface deformation may occur on both bodies. This deformation may either be plastic or elastic, depending on the material properties and the contact pressure. When a surface undergoes plastic deformation, contact resistance is lowered, since the deformation causes the actual contact area to increase [7] [8]

Surface cleanliness

The presence of dust particles, acids, etc., can also influence the contact conductance.

Measurement of thermal contact conductance

Going back to Formula 2, calculation of the thermal contact conductance may prove difficult, even impossible, due to the difficulty in measuring the contact area, (A product of surface characteristics, as explained earlier). Because of this, contact conductance/resistance is usually found experimentally, by using a standard apparatus. [9]

The results of such experiments are usually published in Engineering literature, on journals such as Journal of Heat Transfer , International Journal of Heat and Mass Transfer , etc. Unfortunately, a centralized database of contact conductance coefficients does not exist, a situation which sometimes causes companies to use outdated, irrelevant data, or not taking contact conductance as a consideration at all.

CoCoE (Contact Conductance Estimator), a project founded to solve this problem and create a centralized database of contact conductance data and a computer program that uses it, was started in 2006.

Thermal boundary conductance

While a finite thermal contact conductance is due to voids at the interface, surface waviness, and surface roughness, etc., a finite conductance exists even at near ideal interfaces as well. This conductance, known as thermal boundary conductance, is due to the differences in electronic and vibrational properties between the contacting materials. This conductance is generally much higher than thermal contact conductance, but becomes important in nanoscale material systems.

See also

Related Research Articles

<span class="mw-page-title-main">Friction</span> Force resisting sliding motion

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:

The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or .

<span class="mw-page-title-main">Electrical resistance and conductance</span> Opposition to the passage of an electric current

The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is electrical conductance, measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm, while electrical conductance is measured in siemens (S).

<span class="mw-page-title-main">Thermal insulation</span> Minimization of heat transfer

Thermal insulation is the reduction of heat transfer between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.

Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its thermal conductivity, and is denoted k.

In the study of heat transfer, Newton's law of cooling is a physical law which states that

The rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its environment.

The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations, named for the eighteenth-century French physicist Jean-Baptiste Biot (1774–1862). The Biot number is the ratio of the thermal resistance for conduction inside a body to the resistance for convection at the surface of the body. This ratio indicates whether the temperature inside a body varies significantly in space when the body is heated or cooled over time by a heat flux at its surface.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<span class="mw-page-title-main">R-value (insulation)</span> Measure of how well an object, per unit of area, resists conductive flow of heat

In the context of construction, the R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.

<span class="mw-page-title-main">Lumped-element model</span> Simplification of a physical system into a network of discrete components

The lumped-element model simplifies the description of the behaviour of spatially distributed physical systems, such as electrical circuits, into a topology consisting of discrete entities that approximate the behaviour of the distributed system under certain assumptions. It is useful in electrical systems, mechanical multibody systems, heat transfer, acoustics, etc. This may be contrasted to distributed parameter systems or models in which the behaviour is distributed spatially and cannot be considered as localized into discrete entities.

<span class="mw-page-title-main">Heat sink</span> Passive heat exchanger that transfers the heat

A heat sink is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is dissipated away from the device, thereby allowing regulation of the device's temperature. In computers, heat sinks are used to cool CPUs, GPUs, and some chipsets and RAM modules. Heat sinks are used with high-power semiconductor devices such as power transistors and optoelectronics such as lasers and light-emitting diodes (LEDs), where the heat dissipation ability of the component itself is insufficient to moderate its temperature.

Tribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication and wear. Tribology is highly interdisciplinary, drawing on many academic fields, including physics, chemistry, materials science, mathematics, biology and engineering. People who work in the field of tribology are referred to as tribologists.

Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form and eventually lead to structural failure.

In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat. It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/m2/K).

The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watt. Heat is the flow of thermal energy driven by thermal non-equilibrium, so that 'heat flow' is a redundancy. Heat must not be confused with stored thermal energy, and moving a hot object from one place to another must not be called heat transfer. But, in spite of all these remarks, it is common in normal parlance to say ‘heat flow’, to talk of ‘heat content’, etc.

<span class="mw-page-title-main">Thermal effusivity</span> Ability of a material to exchange thermal energy with surroundings

In thermodynamics, a material's thermal effusivity, also known as thermal responsivity, is a measure of its ability to exchange thermal energy with its surroundings. It is defined as the square root of the product of the material's thermal conductivity and its volumetric heat capacity.

<span class="mw-page-title-main">Pipe insulation</span>

Pipe Insulation is thermal or acoustic insulation used on pipework.

Interfacial thermal resistance, also known as thermal boundary resistance, or Kapitza resistance, is a measure of resistance to thermal flow at the interface between two materials. While these terms may be used interchangeably, Kapitza resistance technically refers to an atomically perfect, flat interface whereas thermal boundary resistance is a more broad term. This thermal resistance differs from contact resistance because it exists even at atomically perfect interfaces. Owing to differences in electronic and vibrational properties in different materials, when an energy carrier attempts to traverse the interface, it will scatter at the interface. The probability of transmission after scattering will depend on the available energy states on side 1 and side 2 of the interface.

Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Thermal resistance is the reciprocal of thermal conductance.

References

  1. Holman, J. P. (1997). Heat Transfer, 8th Edition. McGraw-Hill.
  2. Çengel. Introduction to Thermodynamics and Heat Transfer.
  3. Fletcher, L. S. (November 1988). "Recent Developments in Contact Conductance Heat Transfer". Journal of Heat Transfer. 110 (4b): 1059–1070. Bibcode:1988ATJHT.110.1059F. doi:10.1115/1.3250610.
  4. Madhusudana, C. V.; Ling, F. F. (1995). Thermal Contact Conductance. Springer.
  5. Lambert, M. A.; Fletcher, L. S. (November 1997). "Thermal Contact Conductance of Spherical Rough Metals". Journal of Heat Transfer. 119 (4): 684–690. doi:10.1115/1.2824172.
  6. 1 2 Gan, Y; Hernandez, F; et al. (2014). "Thermal Discrete Element Analysis of EU Solid Breeder Blanket Subjected to Neutron Irradiation". Fusion Science and Technology. 66 (1): 83–90. arXiv: 1406.4199 . Bibcode:2014FuST...66...83G. doi:10.13182/FST13-727. S2CID   51903434.
  7. Williamson, M.; Majumdar, A. (November 1992). "Effect of Surface Deformations on Contact Conductance". Journal of Heat Transfer. 114 (4): 802–810. doi:10.1115/1.2911886.
  8. Heat Transfer Division (November 1970). "Conduction in Solids - Steady State, Imperfect Metal-to-Metal Surface Contact". General Electric Inc.
  9. ASTM D 5470 – 06 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials