Thermococcus ksis | |
---|---|
Electron micrograph | |
Scientific classification | |
Domain: | |
Kingdom: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | |
Species: | T. kodakarensis |
Binomial name | |
Thermococcus kodakarensis Atomi et al, 2004 [1] | |
Thermococcus kodakarensis is a species of thermophilic archaea. The type strain T. kodakarensis KOD1 is one of the best-studied members of the genus. [2]
T. kodakarensis was isolated from a solfatara near the shore of Kodakara Island, Kagoshima, Japan. [3] The isolate was originally named Pyrococcus kodakarensis KOD1, but reclassified as a species of Thermococcus, based on 16S rRNA sequence. [1] Early research with T. kodakarensis was directed mostly at its thermostable enzymes (like the KOD DNA polymerase), but its relative ease of handling and genetic manipulation facilitated by natural competence has made it an attractive system for the study of several biological processes. [4] [5]
T. kodakarensis cells are irregular cocci 1–2 μm in diameter, often occurring in pairs, and are highly motile by means of lophotrichous archaella. The cell wall consists of a layer of diether and tetraether lipids, and an outer glycoprotein coat. [1] [3] T. kodakarensis is an obligate anaerobe, and a heterotroph, growing rapidly on a variety of organic substrates in the presence of elemental sulfur, producing hydrogen sulfide gas. The generation time is estimated to be 40 minutes under optimum conditions. [3] The requirement for elemental sulfur is relieved when pyruvate or starch is used for growth. In the absence of sulfur, hydrogen is produced instead of hydrogen sulfide. [1] Growth is possible at temperature ranging from 60–100 °C, with an optimum at 85 °C. [1] Like other marine organisms, high salt concentrations are required for optimal growth, and cell lysis may occur in dilute solutions.
In 2005, the genome of T. kodakarensis KOD1 was fully sequenced. The genome consists of a single 2,088,737 base pair circular chromosome, encoding a predicted 2306 proteins. [6]
Karl Otto Stetter is a German microbiologist and authority on astrobiology. Stetter is an expert on microbial life at high temperatures.
Pfu DNA polymerase is an enzyme found in the hyperthermophilic archaeon Pyrococcus furiosus, where it functions to copy the organism's DNA during cell division. In the laboratory setting, Pfu is used to amplify DNA in the polymerase chain reaction (PCR), where the enzyme serves the central function of copying a new strand of DNA during each extension step.
Pyrococcus furiosus is a heterotrophic, strictly anaerobic, extremophilic, model species of archaea. It is classified as a hyperthermophile because it thrives best under extremely high temperatures, and is notable for having an optimum growth temperature of 100 °C. P. furiosus belongs to the Pyrococcus genus, most commonly found in extreme environmental conditions of hydrothermal vents. It is one of the few prokaryotic organisms that has enzymes containing tungsten, an element rarely found in biological molecules.
In taxonomy, the Thermococci are a class of microbes within the Euryarchaeota.
Pyrococcus is a genus of Thermococcaceaen archaean.
In taxonomy, Thermococcus is a genus of thermophilic Archaea in the family the Thermococcaceae.
Caldococcus is a genus of Archaea in the order Desulfurococcales.
In enzymology, a 2-oxoglutarate synthase (EC 1.2.7.3) is an enzyme that catalyzes the chemical reaction
In enzymology, an indolepyruvate ferredoxin oxidoreductase (EC 1.2.7.8) is an enzyme that catalyzes the chemical reaction
In enzymology, a pyruvate, water dikinase (EC 2.7.9.2) is an enzyme that catalyzes the chemical reaction
Thermococcus litoralis is a species of Archaea that is found around deep-sea hydrothermal vents as well as shallow submarine thermal springs and oil wells. It is an anaerobic organotroph hyperthermophile that is between 0.5–3.0 μm (20–118 μin) in diameter. Like the other species in the order thermococcales, T. litoralis is an irregular hyperthermophile coccus that grows between 55–100 °C (131–212 °F). Unlike many other thermococci, T. litoralis is non-motile. Its cell wall consists only of a single S-layer that does not form hexagonal lattices. Additionally, while many thermococcales obligately use sulfur as an electron acceptor in metabolism, T. litoralis only needs sulfur to help stimulate growth, and can live without it. T. litoralis has recently been popularized by the scientific community for its ability to produce an alternative DNA polymerase to the commonly used Taq polymerase. The T. litoralis polymerase, dubbed the vent polymerase, has been shown to have a lower error rate than Taq but due to its proofreading 3’–5’ exonuclease abilities, but higher than Pfu polymerase.
Thermococcus celer is a Gram-negative, spherical-shaped archaeon of the genus Thermococcus. The discovery of T. celer played an important role in rerooting the tree of life when T. celer was found to be more closely related to methanogenic Archaea than to other phenotypically similar thermophilic species. T. celer was the first archaeon discovered to house a circularized genome. Several type strains of T. celer have been identified: Vu13, ATCC 35543, and DSM 2476.
Thermococcus gammatolerans is a gram-negative archaea extremophile and the most radiation-resistant organism known to exist.
Pyrococcus abyssi is a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin at 2,000 metres (6,600 ft). It is anaerobic, sulfur-metabolizing, gram-negative, coccus-shaped and highly motile. Its optimum growth temperature is 96 °C (205 °F). Its type strain is GE5. Pyrococcus abyssi has been used as a model organism in studies of DNA polymerase. This species can also grow at high cell densities in bioreactors.
Pyrococcus woesei is an ultra-thermophilic marine archaeon. It is sulfur-reducing and grows optimally between 100 and 103 °C. Its cells have a roughly spherical, elongated and constricted appearance, similar to Thermococcus celer. Frequently, they occur as diploforms. Cells grown on solid supports have dense tufts of flagella or pili attached to one pole.
Thermococcus profundus is a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. It is coccoid-shaped with 1–2 μm in diameter, designated as strain DT5432.
Thermococcus barophilus is a piezophilic and hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. It is anaerobic and sulfur-metabolising, with type strain MPT.
Saccharolobus solfataricus is a species of thermophilic archaeon. It was transferred from the genus Sulfolobus to the new genus Saccharolobus with the description of Saccharolobus caldissimus in 2018.
Thermostable DNA polymerases are DNA polymerases that originate from thermophiles, usually bacterial or archaeal species, and are therefore thermostable. They are used for the polymerase chain reaction and related methods for the amplification and modification of DNA.