Thiosulfate dehydrogenase (quinone)

Last updated
thiosulfate dehydrogenase (quinone)
Identifiers
EC no. 1.8.5.2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a thiosulfate dehydrogenase (quinone) (EC 1.8.5.2) is an enzyme that catalyzes the chemical reaction

2 thiosulfate + 2 6-decylubiquinone tetrathionate + 2 6-decylubiquinol

Thus, the two substrates of this enzyme are thiosulfate and 6-decylubiquinone, whereas its two products are tetrathionate and 6-decylubiquinol.

This enzyme belongs to the family of oxidoreductases, specifically those acting on a sulfur group of donors with a quinone or similar compound as acceptor. The systematic name of this enzyme class is thiosulfate:6-decylubiquinone oxidoreductase. Other names in common use include thiosulfate:quinone oxidoreductase, thiosulphate:quinone oxidoreductase, thiosulfate oxidoreductase, tetrathionate-forming, and TQO.

Related Research Articles

Photographic fixer is a mix of chemicals used in the final step in the photographic processing of film or paper. The fixer stabilises the image, removing the unexposed silver halide remaining on the photographic film or photographic paper, leaving behind the reduced metallic silver that forms the image. By fixation, the film or paper is insensitive to further action by light. Without fixing, the remaining silver halide would darken and cause fogging of the image. Fixation is commonly achieved by treating the film or paper with a solution of thiosulfate salt. Popular salts are sodium thiosulfate—commonly called hypo—and ammonium thiosulfate—commonly used in modern rapid fixer formulae. Fixation involves these chemical reactions (X = halide, typically Br):

<span class="mw-page-title-main">Sodium thiosulfate</span> Chemical compound

Sodium thiosulfate is an inorganic compound with the formula Na2S2O3·xH2O, where x indicates the number of water molecules in the compound. Typically it is available as the white or colorless pentahydrate, Na2S2O3·5H2O. The solid is an efflorescent crystalline substance that dissolves well in water.

<span class="mw-page-title-main">Thiosulfate</span> Polyatomic ion (S2O3, charge –2)

Thiosulfate is an oxyanion of sulfur with the chemical formula S2O2−3. Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, e.g. sodium thiosulfate Na2S2O3. The prefix thio- indicates that the thiosulfate is a sulfate with one oxygen replaced by sulfur. Thiosulfate is tetrahedral at the central S atom. Thiosulfate salts occur naturally. Thiosulfate ion has C3v symmetry, and is produced by certain biochemical processes. It rapidly dechlorinates water and is notable for its use to halt bleaching in the paper-making industry. Thiosulfate salts are mainly used in dying in textiles and the bleaching of natural substances.

<span class="mw-page-title-main">Rhodanese</span> Mitochondrial enzyme which breaks down cyanide

Rhodanese, also known as rhodanase, thiosulfate sulfurtransferase, thiosulfate cyanide transsulfurase, and thiosulfate thiotransferase, is a mitochondrial enzyme that detoxifies cyanide (CN) by converting it to thiocyanate (SCN).

In enzymology, a pyrroloquinoline-quinone synthase (EC 1.3.3.11) is an enzyme that catalyzes the chemical reaction

In enzymology, a glucose 1-dehydrogenase is an enzyme that catalyzes the chemical reaction

In enzymology, a malate dehydrogenase (quinone) (EC 1.1.5.4), formerly malate dehydrogenase (acceptor) (EC 1.1.99.16), is an enzyme that catalyzes the chemical reaction

In enzymology, a quinoprotein glucose dehydrogenase is an enzyme that catalyzes the chemical reaction

In enzymology, a phenylacetyl-CoA dehydrogenase (EC 1.17.5.1) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Ribosyldihydronicotinamide dehydrogenase (quinone)</span>

In enzymology, a ribosyldihydronicotinamide dehydrogenase (quinone) (EC 1.10.99.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

In enzymology, a NADPH dehydrogenase (quinone) (EC 1.6.5.10) is an enzyme that catalyzes the chemical reaction

In enzymology, a NADPH:quinone reductase (EC 1.6.5.5) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Thiosulfate dehydrogenase</span>

Thiosulfate dehydrogenase is an enzyme that catalyzes the chemical reaction:

In enzymology, a trithionate hydrolase (EC 3.12.1.1) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase, quinone 2</span> Protein-coding gene in the species Homo sapiens

NAD(P)H dehydrogenase, quinone 2, also known as QR2, is a protein that in humans is encoded by the NQO2 gene. It is a phase II detoxification enzyme which can carry out two or four electron reductions of quinones. Its mechanism of reduction is through a ping-pong mechanism involving its FAD cofactor. Initially in a reductive phase NQO2 binds to reduced dihydronicotinamide riboside (NRH) electron donor, and mediates a hydride transfer from NRH to FAD. Then, in an oxidative phase, NQO2 binds to its quinone substrate and reduces the quinone to a dihydroquinone. Besides the two catalytic FAD, NQO2 also has two zinc ions. It is not clear whether the metal has a catalytic role. NQO2 is a paralog of NQO1

NQO2 is a homodimer. NQO2 can be inhibited by resveratrol. One of QR2's binding sites responds to 2-iodomelatonin, and has been referred to as MT3.
<span class="mw-page-title-main">NADH:ubiquinone reductase (non-electrogenic)</span> Class of enzymes

NADH:ubiquinone reductase (non-electrogenic) (EC 1.6.5.9, NDH-2, ubiquinone reductase, coenzyme Q reductase, dihydronicotinamide adenine dinucleotide-coenzyme Q reductase, DPNH-coenzyme Q reductase, DPNH-ubiquinone reductase, NADH-coenzyme Q oxidoreductase, NADH-coenzyme Q reductase, NADH-CoQ oxidoreductase, NADH-CoQ reductase) is an enzyme with systematic name NADH:ubiquinone oxidoreductase. This enzyme catalyses the following chemical reaction:

Sulfide:quinone reductase is an enzyme with systematic name sulfide:quinone oxidoreductase. This enzyme catalyses the following chemical reaction

<i>Acidithiobacillus thiooxidans</i> Species of bacterium

Acidithiobacillus thiooxidans, formerly known as Thiobacillus thiooxidans until its reclassification into the newly designated genus Acidithiobacillus of the Acidithiobacillia subclass of Pseudomonadota, is a Gram-negative, rod-shaped bacterium that uses sulfur as its primary energy source. It is mesophilic, with a temperature optimum of 28 °C. This bacterium is commonly found in soil, sewer pipes, and cave biofilms called snottites. A. thiooxidans is used in the mining technique known as bioleaching, where metals are extracted from their ores through the action of microbes.

<span class="mw-page-title-main">Trithionate</span> Chemical compound

Trithionate is an oxyanion of sulfur with the chemical formula S
3
O2−
6
. It is the conjugate base of trithionic acid. Dilute sodium hydroxide hydrolyzes S
4
N
4
as follows, yielding sodium thiosulfate and sodium trithionate:

References