Thomas Weiland

Last updated

Thomas Weiland (born October 24, 1951, in Riegelsberg, Saarland, Germany) [1] is a German physicist, engineer and entrepreneur. He is a professor of electrical engineering and headed the Institute of Electromagnetic Field Theory at the Department of Electrical Engineering and Information Technology of the Technical University of Darmstadt for many years. In 1988, Weiland was awarded the Gottfried Wilhelm Leibniz Prize. [2] He was also named an IEEE Fellow in the year 2012, for development of the Finite Integration Technique and impact of the associated software on electromagnetic engineering. [3]

Contents

Life and work

Training

From 1961 to 1970, Thomas Weiland attended the Ludwigsgymnasium in Saarbrücken. [4] His thirst for research became apparent early on here, as he received six mathematics and physics prizes at state and national level while still a student. This also included several successful participations in the Jugend forscht program, which was already very popular at the time. [5] [6] [7] After being accepted into the Friedrich Ebert Foundation's study sponsorship program, Weiland studied at the Technische Hochschule Darmstadt (TH Darmstadt) beginning in 1970. He graduated there in 1975 with a diploma in Theoretical Electrical Engineering. [4]

Scientific career

As a research assistant at the Chair of Fundamentals of Electrical Engineering, Thomas Weiland remained loyal to the TH Darmstadt for the next four years after receiving his diploma. In the meantime, there he was also awarded his doctorate in engineering in 1977. In 1979, he finally joined the Theory Group at the CERN particle laboratory in Switzerland as a fellow. From 1981, he worked as a research associate at the DESY research center in Hamburg and headed the Electromagnetic Fields Group there from 1982 to 1989. [1] In parallel, he led the Wakefield Accelerator Research Group and here he was able to eventually prove the wakefield transformation – which was previously invented by himself and G.A. Voss – with his wakefield experiment in 1987. [8] [9] [10] Also within this period, Weiland completed his habilitation in experimental physics at the University of Hamburg (1984). [1]

Furthermore, in the first half of the 1980s Weiland was a visiting scientist at scientific institutions in the USA and Japan several times, including Stanford University. Subsequently, he turned down several offers of professorships in Texas and Berlin, finally taking over as chair of Electromagnetic Field Theory at the TH Darmstadt (later renamed TU Darmstadt) in 1989 – a position he held until 2017. In 1994 and 1997, he spent two sabbaticals at Stanford University and the University of Victoria. [4]

Starting in 2000, Weiland, together with several other professors at the TU Darmstadt, pushed a comprehensive computational engineering initiative. [11] From 2003 to 2006, he was chairman of the board of directors of the Computational Engineering Research Center, which had been newly established the year before. [1] In 2007, the founding of the Graduate School of Computational Engineering (Graduate School CE) followed as part of the Excellence Initiative of the German federal and state governments. [11] [12]

In the course of his time as professor and head of his institute at the TU Darmstadt, Thomas Weiland guided over 100 doctoral students to a successful doctorate. In turn, ten professorships emerged from the circle of these. Together with his staff, Weiland published almost 1400 scientific publications. [13]

Scientific work

Thomas Weiland's scientific fields of activity within theoretical electrical engineering are complex. His core competences are research and further development of numerical methods for the computation of electromagnetic fields and their electromagnetic interaction or electromagnetic compatibility, accelerator physics, computational engineering (computer-aided modeling, simulation, analysis and optimization), time domain analysis and simulation, as well as multiphysics simulation methods and problem solving.

Weiland had already dealt with the numerical computation of electromagnetic fields in the course of his doctorate. This was not only to shape his own career. Particularly a few years later, it should revolutionize the general approach to prototype construction within electrical engineering and have a lasting influence on it to this day. A central position of Weiland's calculations and his scientific work is occupied by his development of the Finite Integration Theory (FIT). He first presented this in 1977, as a consistent formulation for the discrete representation of Maxwell's basic electromagnetic equations on spatial grids. Finite Integration Theory (also known as Finite Integration Technique) forms the physical-mathematical basis of simulation programs that are currently almost indispensable in the development of a wide range of technological products, such as mobile phones. [14] [15]

Entrepreneurship and economic importance

In order to be able to use the results of his basic electromagnetic research for concrete technical developments, Thomas Weiland began in 1985 to bundle his scientific findings with regard to FIT in what was then a new type of software: MAFIA (Maxwell's Equations by the Finite Integration Algorithm), a CAD system, prepared by an international collaboration between DESY, KFA Jülich and LANL which had been initiatively set up by Weiland, quickly proved to be groundbreaking. It allowed electromagnetic fields and their interactions to be modeled and simulated three-dimensionally, automatically and so realistically on the computer that time-consuming experiments or tests during prototype construction became largely superfluous. [16] [17] [15]

For continuous development and smooth commercial distribution of his software, Weiland founded Computer Simulation Technology GmbH (CST) in 1992. CST GmbH quickly became the world market leader in the sector of electromagnetic field simulation in the time domain, with offices in 16 countries. 1998, the now further developed algorithms of the MAFIA software were re-embedded in its successor CST Microwave Studio and in 2005 again in the currently popular software package CST Studio Suite. Worldwide, thousands of leading companies in various industries (such as the Bosch Group, Airbus Defence & Space or Dentsply Sirona) use this software grounded in the Finite Integration Technique. This is because with it they can drastically reduce development effort and costs as well as the time to market for new products. [15] [18] [19]

In the year 2008, CST GmbH was converted into an Aktiengesellschaft in which Weiland acted as chairman of the supervisory board until 2016. [20] In the fourth quarter of 2016, CST AG became part of Dassault Systèmes SE and was thus integrated into Europe's second-largest software group after SAP. Dassault Systèmes saw the integration of the CST solutions into its existing CAD applications as a forward-looking opportunity to set a new industry standard: for multiphysics and multiscale simulation of autonomous vehicles, networked buildings, medical equipment, wearable electronic devices, smartwatches and smart textiles as well as many other objects within the Internet of Things. [19]

Additionally, Weiland founded in 2014 Advanced Computational Engineering GmbH (ACE) together with other shareholders. ACE advises companies on the application of computational engineering methods and on related project development and study preparation. [21] [22] Since 2017 he has been chairman of the supervisory board of ALCAN Systems GmbH which is active in the development of liquid crystal flat panel smart antennas. [23] [24] [25]

Social commitment and Thomas Weiland Foundation

Weiland himself is well aware of the importance of the TU Darmstadt (former TH Darmstadt) in terms of his scientific and entrepreneurial career. He sees it as a place of autonomy and flexibility that allows scientists an extraordinary degree of freedom in both teaching and research – and to which, in his own words, he would like to "give something back" accordingly. [26] [18] With this in mind, following the sale of CST AG in 2016, he provided the university with a sum for a new building. [27]

Enabling young people to study and supporting university students, respectively, is also a very special concern of his. The Thomas Weiland Foundation, which he established 2014, therefore rewards excellent school and study achievements. It currently supports around 50 bachelor's and master's students (and around 20 new ones each year) with a scholarship that largely covers living expenses throughout their studies. In 2021, an additional funding line was created for prize winners of Jugend forscht. [28] [29]

Awards and honors

Related Research Articles

<span class="mw-page-title-main">DESY</span> German national research center

DESY, short for Deutsches Elektronen-Synchrotron, is a national research centre for fundamental science located in Hamburg and Zeuthen near Berlin in Germany. It operates particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research in four main areas: particle and high energy physics; photon science; astroparticle physics; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany and the Federal States of Hamburg and Brandenburg and is a member of the Helmholtz Association.

<span class="mw-page-title-main">Computational physics</span> Numerical simulations of physical problems via computers

Computational physics is the study and implementation of numerical analysis to solve problems in physics. Historically, computational physics was the first application of modern computers in science, and is now a subset of computational science. It is sometimes regarded as a subdiscipline of theoretical physics, but others consider it an intermediate branch between theoretical and experimental physics — an area of study which supplements both theory and experiment.

<span class="mw-page-title-main">Computer-aided engineering</span> Use of software for engineering design and analysis

Computer-aided engineering (CAE) is the general usage of technology to aid in tasks related to engineering analysis. Any use of technology to solve or assist engineering issues falls under this umbrella.

<span class="mw-page-title-main">Technische Universität Darmstadt</span> Public university in Darmstadt, Germany

The Technische Universität Darmstadt, commonly known as TU Darmstadt, is a research university in the city of Darmstadt, Germany. It was founded in 1877 and received the right to award doctorates in 1899. In 1882, it was the first university in the world to set up a chair in electrical engineering. In 1883, the university founded the first faculty of electrical engineering and introduced the world's first degree course in electrical engineering. In 2004, it became the first German university to be declared as an autonomous university. TU Darmstadt has assumed a pioneering role in Germany. Computer science, electrical engineering, artificial intelligence, mechatronics, business informatics, political science and many more courses were introduced as scientific disciplines in Germany by Darmstadt faculty.

The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations, including fluid mechanics, acoustics, electromagnetics, fracture mechanics, and contact mechanics.

<span class="mw-page-title-main">Finite-difference time-domain method</span> Numerical analysis technique

Finite-difference time-domain (FDTD) or Yee's method is a numerical analysis technique used for modeling computational electrodynamics. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run, and treat nonlinear material properties in a natural way.

<span class="mw-page-title-main">Ansys</span> American technology company

Ansys, Inc. is an American multinational company with its headquarters based in Canonsburg, Pennsylvania. It develops and markets CAE/multiphysics engineering simulation software for product design, testing and operation and offers its products and services to customers worldwide.

<span class="mw-page-title-main">Computational electromagnetics</span> Branch of physics

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment using computers.

Dassault Systèmes Simulia Corp. is a computer-aided engineering (CAE) vendor. Formerly known as Abaqus Inc. and previously Hibbitt, Karlsson & Sorensen, Inc., (HKS), the company was founded in 1978 by David Hibbitt, Bengt Karlsson and Paul Sorensen, and has its headquarters in Providence, Rhode Island.

<span class="mw-page-title-main">Computational engineering</span>

Computational Engineering is an emerging discipline that deals with the development and application of computational models for engineering, known as Computational Engineering Models or CEM. Computational engineering uses computers to solve engineering design problems important to a variety of industries. At this time, various different approaches are summarized under the term Computational Engineering, including using computational geometry and virtual design for engineering tasks, often coupled with a simulation-driven approach In Computational Engineering, algorithms solve mathematical and logical models that describe engineering challenges, sometimes coupled with some aspect of AI, specifically Reinforcement Learning.

<span class="mw-page-title-main">OpenFOAM</span> Open-source software package for numerical processes

OpenFOAM is a C++ toolbox for the development of customized numerical solvers, and pre-/post-processing utilities for the solution of continuum mechanics problems, most prominently including computational fluid dynamics (CFD).

<span class="mw-page-title-main">Abaqus</span> Software for finite element analysis

Abaqus FEA is a software suite for finite element analysis and computer-aided engineering, originally released in 1978. The name and logo of this software are based on the abacus calculation tool. The Abaqus product suite consists of five core software products:

  1. Abaqus/CAE, or "Complete Abaqus Environment". It is a software application used for both the modeling and analysis of mechanical components and assemblies (pre-processing) and visualizing the finite element analysis result. A subset of Abaqus/CAE including only the post-processing module can be launched independently in the Abaqus/Viewer product.
  2. Abaqus/Standard, a general-purpose Finite-Element analyzer that employs implicit integration scheme (traditional).
  3. Abaqus/Explicit, a special-purpose Finite-Element analyzer that employs explicit integration scheme to solve highly nonlinear systems with many complex contacts under transient loads.
  4. Abaqus/CFD, a Computational Fluid Dynamics software application which provides advanced computational fluid dynamics capabilities with extensive support for preprocessing and postprocessing provided in Abaqus/CAE - discontinued in Abaqus 2017 and further releases.
  5. Abaqus/Electromagnetic, a Computational electromagnetics software application which solves advanced computational electromagnetic problems.

Feko is a computational electromagnetics software product developed by Altair Engineering. The name is derived from the German acronym "Feldberechnung für Körper mit beliebiger Oberfläche", which can be translated as "field calculations involving bodies of arbitrary shape". It is a general purpose 3D electromagnetic (EM) simulator.

Peter Peet Silvester was an electrical engineer who contributed to understanding of numerical analysis of electromagnetic fields and authored a standard textbook on the subject.

Flow Science, Inc. is a developer of software for computational fluid dynamics, also known as CFD, a branch of fluid mechanics that uses numerical methods and algorithms to solve and analyze problems that involve fluid flows.

A charged particle accelerator is a complex machine that takes elementary charged particles and accelerates them to very high energies. Accelerator physics is a field of physics encompassing all the aspects required to design and operate the equipment and to understand the resulting dynamics of the charged particles. There are software packages associated with each domain. The 1990 edition of the Los Alamos Accelerator Code Group's compendium provides summaries of more than 200 codes. Certain codes are still in use today, although many are obsolete. Another index of existing and historical accelerator simulation codes is located at the CERN CARE/HHH website.

Ulrich Jakobus is Senior Vice President - Electromagnetic Solutions of Altair, Germany and was awarded Fellow of the Institute of Electrical and Electronics Engineers (IEEE) in 2013 for leadership in hybrid computational tool development and commercialization. His research laid the foundations for the commercial electromagnetics code FEKO which is used in antenna design, antenna placement, electromagnetic compatibility, microwave components, bioelectromagnetics, radar cross section and related fields.

<span class="mw-page-title-main">Alcan Systems</span> German telecommunications company

ALCAN Systems GmbH is a telecommunications company based in Darmstadt, Germany. The company is currently developing antenna systems for fixed, mobile, cellular and satellite-communication.

<span class="mw-page-title-main">Ursula van Rienen</span> German physicist

Ursula van Rienen is a German applied mathematician and physicist whose research involves computational electrodynamics, the computational simulation of interactions between electromagnetic fields and biological tissue, and its applications in electrical brain stimulation. She is a university professor in the Institut für Allgemeine Elektrotechnik at the University of Rostock, where she holds the Chair of Electromagnetic Field Theory.

References

  1. 1 2 3 4 "Die Mitglieder der Akademie und der Jungen Akademie | Prof. Dr.-Ing. Thomas Weiland". Akademie der Wissenschaften und der Literatur Mainz (in German). Retrieved 2023-06-21.
  2. "Liste der mit dem Gottfried Wilhelm Leibniz-Preis Ausgezeichneten" (PDF). Deutsche Forschungsgemeinschaft (DFG) (in German). Retrieved 2023-06-21.
  3. "MTT Society News: Newly elevated fellows" (PDF). IEEE Microwave Magazine. 13 (2). IEEE: 94–95. March 12, 2012. doi:10.1109/MMM.2011.2181670. ISSN   1557-9581 . Retrieved 2023-06-21 via IEEEXplore.
  4. 1 2 3 "Staff at TEMF | Prof. Dr.-Ing. Thomas Weiland". Institute for Accelerator Science and Electromagnetic Fields (TEMF). Technical University of Darmstadt. Retrieved 2023-06-21.
  5. "Tonmodulierte Hochfrequenz als Signalträger elektronisch chiffrieren und dechiffrieren". jugend forscht | Projektdatenbank (in German). Stiftung Jugend forscht e. V. 1968. Retrieved 2023-06-21.
  6. "Mathematisch-elektronisches Chiffriersystem zur geheimen Nachrichtenübermittlung". jugend forscht | Projektdatenbank (in German). Stiftung Jugend forscht e. V. 1969. Retrieved 2023-06-21.
  7. "Entwicklung und Bau eines billigen Präzisions-Frequenzmessers sowie einer automatischen Oszillographenschaltung". jugend forscht | Projektdatenbank (in German). Stiftung Jugend forscht e. V. 1970. Retrieved 2023-06-21.
  8. Voss, G. A. & Weiland, T. (April, 1982). "Particle acceleration by wake fields" [Internal report No. M-82-10, unpublished]. Deutsches Elektronen-Synchotron (DESY), Hamburg, Germany: pp. 1-21. DESY Publications Database, retrieved 2023-06-27.
  9. Voss, G. A. & Weiland, T. (1982). "The wake field acceleration mechanism" [Conference paper]. Proceedings of the ECFA-RAL topical meeting: The challenge of ultra-high energies, invited. Oxford, England, September 27–30, 1982: pp. 287–308. Fermilab Technical Publications, retrieved 2023-06-27.
  10. Bialowons, W., Bremer H. D., Decker, F. J., Lewin, H. C., Voss, G. A., Schütt, P., Weiland, T. & Xiao C. (1987). "The wake field transformer experiment at DESY" [Conference paper]. ECFA - CAS/CERN - IN2P3 - IRF/CEA - EPS workshop on new developments in particle acceleration techniques [Conference report, October 12, 1987]. S. Turner (ed.). Vol. 1. Orsay, France, June 29 - July 4, 1987: pp. 298-307. CERN document server, retrieved 2023-06-27.
  11. 1 2 "GSC 233: Graduate School of Computational Engineering". GEPRIS - Geförderte Projekte der DFG. Deutsche Forschungsgemeinschaft. Retrieved 2023-06-22.
  12. "Graduate-School-CE". Computational Engineering at the Technical University of Darmstadt. Retrieved 2023-06-22.
  13. "Publications - Thomas Weiland". TUbiblio. Technical University of Darmstadt. Retrieved 2023-06-22.
  14. Weiland, Thomas. "A discretization model for the solution of Maxwell's equations for six-component fields" (1977).International Journal of Electronics and Communications (former AEÜ - Archiv für Elektronik und Übertragungstechnik). Hirzel. Volume 31, Issue 3: pp. 116-120. ISSN 1434-8411
  15. 1 2 3 Johnston, Hamish (May 26, 2009). "Electromagnetic software accelerates ahead". Physics World. IOP Publishing. Retrieved 2023-06-27.
  16. Weiland, Thomas (1985). "Computer modelling of two- and three-dimensional cavities" [Conference paper]. 11th Particle Accelerator Conference: Accelerator Engineering and Technology. Vancouver, Canada, May 13–16, 1985: pp. 1-5. DESY Publications Database, retrieved 2023-06-27.
  17. Klatt, R., Krawczyk, F., Novender, W. R., Palm, C. & Weiland, T. [DESY], Steffen, B. [Kernforschungsanlage Jülich], Barts, T., Browman, M. J., Cooper, R., Mottershead C. T., Rodenz, S.G. [Los Alamos National Laboratory] (1986). "MAFIA - a three-dimensional electromagnetic CAD system for magnets, RF structures, and transient wakefield calculations" [Conference paper]. 13th International Linear Accelerator Conference, Stanford, USA, January 2–6, 1986: pp. 14-16: DESY Publications Database, retrieved 2023-06-27.
  18. 1 2 Ludwig, Astrid (July 17, 2018). "Millionenspenden als Dank für akademische Freiheit". Frankfurter Allgemeine Zeitung (in German) (163): 32. ISSN   0174-4909.
  19. 1 2 "Dassault Systèmes Completes CST Acquisition". Business Wire. October 3, 2016. Retrieved 2023-06-27.
  20. "Firmenbekanntmachungen | CST - Computer Simulation Technology GmbH, Darmstadt". North Data (in German). Retrieved 2023-06-27.
  21. "Firmenbekanntmachungen | ACE - Advanced Computational Engineering GmbH". North Data (in German). Retrieved 2023-06-27.
  22. "ACE GmbH - About". ace-gmbh.biz. Retrieved 2023-06-30.
  23. "Firmenbekanntmachungen | ALCAN Systems GmbH, Darmstadt". North Data (in German). Retrieved 2023-06-27.
  24. "ALCAN Systems | About - Board members". ALCAN Systems. Retrieved 2023-06-27.
  25. "ALCAN the smart antenna company". ALCAN systems. Retrieved 2023-06-27.
  26. Thomas Weiland in his concluding remarks on honoring the new scholarship holders at the Georg Christoph Lichtenberg House in Darmstadt on July 9, 2022 [unpublished].
  27. "TU Darmstadt erhält neues Institutsgebäude". DIE WELT (in German). December 19, 2016. Retrieved 2023-06-27.
  28. "The Thomas Weiland Foundation". TU Darmstadt - Thomas Weiland Foundation. Retrieved 2023-06-27.
  29. Saß, Karl Ulrich (April 21, 2022). "Stipendien für kluge Köpfe und forschende Jugend: Thomas Weiland-Stiftung erweitert Stipendienangebot". TU Darmstadt - News Archiv (in German). Retrieved 2023-06-27.