International standard | IEEE 802.15.4 |
---|---|
Introduced | September 2015 |
Industry | Industrial wireless sensor networks |
Time Slotted Channel Hopping or Time Synchronized Channel Hopping (TSCH) is a channel access method for shared-medium networks.
TSCH is used by Low-Power devices to communicate using a wireless link. It is designed for low-power and lossy networks (LLNs) and aims at providing a reliable Media access control layer.
TSCH can be seen as a combination of Time-division multiple access and Frequency-division multiple access mechanisms as it uses diversity in time and frequency to provide reliability to the upper network layers.
The TSCH mode was introduced in 2012 as an amendment (IEEE 802.15.4e) to the Medium Access Control (MAC) portion of the IEEE 802.15.4 standard. The amendment was rolled into the IEEE 802.15.4 in 2015.
Wireless communications are often referred as unreliable due to the unpredictability of the wireless medium. While wireless communications bring many advantages (e.g no wires maintenance, costs reduction ...), the lack of reliability slows down the adoption of wireless networks technologies.
TSCH aims at reducing the impact of the wireless medium unpredictability to enable the use of reliable low-power wireless networks. It is very good at saving the nodes' energy because each node shares a schedule, allowing it to know in advance when to turn on or off its radio. [1]
The IEEE 802.15.4 standard uses different frequency bands, and each frequency band is separated in channels. In TSCH, communications are done using those different channels and at different times. However, this standard does not define how to build and maintain the communication schedule. Many works have been proposed to organize the schedule in a centralized [2] or distributed [3] [4] way.
Let chOf be the channel offset, assigned to a given link. The channel offset, chOf, is translated to a frequency f (i.e. a real channel) using:
where ASN is the Absolute Slot Number, i.e. the total number of slots that elapsed since the network was deployed. The ASN is incremented at each slot and shared by all devices in the network.
Multipath propagation can create internal destructive interference of a wireless signal known as multipath fading. This phenomenon can be overcome by shifting the location of the communicating nodes or by switching the communication carrier frequency.
The channel hopping mechanism of TSCH allows to overcome the impact of multipath fading by changing the communication carrier frequency for every transmission. [5] [6]
TSCH is implemented in simulation or on real hardware.
Simulation:
Firmware:
TSCH is one of the key elements of the 6TiSCH [7] stack [8] as part of the IEEE802.15.4-2015 standard.
Due to its low power consumption and reliability, TSCH (or its previous versions) is mainly used in Low-Power Wireless Sensor Networks.
Companies are using it in their wireless sensor networks such as Linear Technology [9] [10] and Emerson [11]
IEEE 802.15 is a working group of the Institute of Electrical and Electronics Engineers (IEEE) IEEE 802 standards committee which specifies Wireless Specialty Networks (WSN) standards. The working group was formerly known as Working Group for Wireless Personal Area Networks.
In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.
Ultra-wideband is a radio technology that can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum. UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precise locating, and tracking. UWB support started to appear in high-end smartphones in 2019.
IEEE 802.15.4 is a technical standard that defines the operation of a low-rate wireless personal area network (LR-WPAN). It specifies the physical layer and media access control for LR-WPANs, and is maintained by the IEEE 802.15 working group, which defined the standard in 2003. It is the basis for the Zigbee, ISA100.11a, WirelessHART, MiWi, 6LoWPAN, Thread, Matter and SNAP specifications, each of which further extends the standard by developing the upper layers, which are not defined in IEEE 802.15.4. In particular, 6LoWPAN defines a binding for the IPv6 version of the Internet Protocol (IP) over WPANs, and is itself used by upper layers such as Thread.
A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.
Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental conditions such as temperature, sound, pollution levels, humidity and wind.
In telecommunications, received signal strength indicator or received signal strength indication (RSSI) is a measurement of the power present in a received radio signal.
In telecommunications, visible light communication (VLC) is the use of visible light as a transmission medium. VLC is a subset of optical wireless communications technologies.
A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.
TSMP, an acronym for Time Synchronized Mesh Protocol, was developed by Dust Networks as a communications protocol for self-organizing networks of wireless devices called motes. TSMP devices stay synchronized to each other and communicate in time-slots, similar to other TDM systems. Such deterministic communication allows the devices to stay extremely low power, as the radios only turn on for the periods of scheduled communication. The protocol is designed to operate very reliably in a noisy environment. It uses channel hopping to avoid interference -- the packets between TSMP devices get sent on different radio channels depending on time of transmission. TSMP distinguishes itself from other time-slotted mesh-based protocols, in that time-slot timing is maintained continuously and enables a network to duty-cycle on a transmitter-receiver pair-wise basis, as opposed to putting the entire network to sleep for extended periods of time.
In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.
In digital communications, chirp spread spectrum (CSS) is a spread spectrum technique that uses wideband linear frequency modulated chirp pulses to encode information. A chirp is a sinusoidal signal whose frequency increases or decreases over time.
Dust Networks, Inc. is an American company that specializes in the design and manufacture of wireless sensor networks for industrial applications including process monitoring, condition monitoring, asset management, environment, health and safety (EHS) monitoring, and power management. They were acquired by Linear Technology, Inc in December 2011, which in turn was acquired by Analog Devices, Inc. in 2017. The Dust Networks product team operates in the IoT Networking Platforms group of Analog Devices.
A mobile wireless sensor network (MWSN) can simply be defined as a wireless sensor network (WSN) in which the sensor nodes are mobile. MWSNs are a smaller, emerging field of research in contrast to their well-established predecessor. MWSNs are much more versatile than static sensor networks as they can be deployed in any scenario and cope with rapid topology changes. However, many of their applications are similar, such as environment monitoring or surveillance. Commonly, the nodes consist of a radio transceiver and a microcontroller powered by a battery, as well as some kind of sensor for detecting light, heat, humidity, temperature, etc.
A Wireless powerline sensor hangs from an overhead power line and sends measurements to a data collection system. Because the sensor does not contact anything but a single live conductor, no high-voltage isolation is needed. The sensor, installed simply by clamping it around a conductor, powers itself from energy scavenged from electrical or magnetic fields surrounding the conductor being measured. Overhead power line monitoring helps distribution system operators provide reliable service at optimized cost.
Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is the dominant air interface for 4G and 5G broadband wireless communications. It combines multiple-input, multiple-output (MIMO) technology, which multiplies capacity by transmitting different signals over multiple antennas, and orthogonal frequency-division multiplexing (OFDM), which divides a radio channel into a large number of closely spaced subchannels to provide more reliable communications at high speeds. Research conducted during the mid-1990s showed that while MIMO can be used with other popular air interfaces such as time-division multiple access (TDMA) and code-division multiple access (CDMA), the combination of MIMO and OFDM is most practical at higher data rates.
A low-power, wide-area network is a type of wireless telecommunication wide area network designed to allow long-range communication at a low bit rate between IoT devices, such as sensors operated on a battery.
OpenWSN is a project created at the University of California Berkeley and extended at the INRIA and at the Open University of Catalonia (UOC) which aims to build an open standard-based and open source implementation of a complete constrained network protocol stack for wireless sensor networks and Internet of Things. The root of OpenWSN is a deterministic MAC layer implementing the IEEE 802.15.4e TSCH based on the concept of Time Slotted Channel Hopping (TSCH). Above the MAC layer, the Low Power Lossy Network stack is based on IETF standards including the IETF 6TiSCH management and adaptation layer. The stack is complemented by an implementation of 6LoWPAN, RPL in non-storing mode, UDP and CoAP, enabling access to devices running the stack from the native IPv6 through open standards.
LoRa is a physical proprietary radio communication technique. It is based on spread spectrum modulation techniques derived from chirp spread spectrum (CSS) technology. It was developed by Cycleo, a company of Grenoble, France, and patented in 2014. Cycleo was later acquired by Semtech.
RF CMOS is a metal–oxide–semiconductor (MOS) integrated circuit (IC) technology that integrates radio-frequency (RF), analog and digital electronics on a mixed-signal CMOS RF circuit chip. It is widely used in modern wireless telecommunications, such as cellular networks, Bluetooth, Wi-Fi, GPS receivers, broadcasting, vehicular communication systems, and the radio transceivers in all modern mobile phones and wireless networking devices. RF CMOS technology was pioneered by Pakistani engineer Asad Ali Abidi at UCLA during the late 1980s to early 1990s, and helped bring about the wireless revolution with the introduction of digital signal processing in wireless communications. The development and design of RF CMOS devices was enabled by van der Ziel's FET RF noise model, which was published in the early 1960s and remained largely forgotten until the 1990s.
{{citation}}
: |last=
has generic name (help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)