Time synchronization in North America can be achieved with many different methods, some of which require only a telephone, while others require expensive, sensitive, and rare electronic equipment. In the United States, the United States Naval Observatory provides the standard of time, called UTC(USNO), for the United States military and the Global Positioning System, [1] while the National Institute of Standards and Technology provides the standard of time for civil purposes in the United States, called UTC(NIST).
A standard frequency and time signal service is a station that operates on or immediately adjacent to 2.5 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz, and 25 MHz, as specified by Article 5 of the ITU Radio Regulations (edition 2012). [2] The US service is provided by radio stations WWV (Colorado) and WWVH (Hawaii).
The methods below provide either Coordinated Universal Time (UTC), which is defined by Recommendation ITU-R TF.460, [3] or the official U.S. implementation of UTC, officially labeled UTC (NIST).
Several different time synchronization protocols exist on the Internet, including:
Protocol | RFCs | Accuracy | Ports | Time servers |
---|---|---|---|---|
Daytime Protocol | RFC 868 | Nearest second | TCP port 13 | |
Time Protocol (a.k.a. NETDATE) | RFC 868 | Nearest second | TCP/UPD part 37 | |
NTP | RFC 1305, RFC 5905 | |||
SNTP | RFC 1769, RFC 2030 | |||
ICMP TIMESTAMP | RFC 0792, page 16 | |||
IP TIMESTAMP option | RFC 0791, 3.1, page 16 |
GPS receiver requirements
In 2009 the Federal Energy Regulatory Commission made time error correction (TEC) of the power grid frequency mandatory. [9] While TEC does not provide full synchronization (date and time) and synchronization is lost in case of a power outage it provides an inexpensive way to maintain high long term accuracy of synchronous clocks found in most household appliances. Once the initial time is set the power grid will typically maintain the accuracy within 10 seconds relative to UTC by adjusting frequency. [10]
Several different organizations provide publicly accessible recorded voice time sources, including the NIST Telephone Time of Day Service, see speaking clock. Other sources include GPS, terrestrial radio time signals, and internet services, as listed below.
Time Signal | Time Provided | Accuracy | Source | Signal Format | Hardware Requirements | Linux/Unix Software | Windows Software |
---|---|---|---|---|---|---|---|
GPS | UTC(USNO) | 1575.42 MHz | NMEA 0183 sentences, 1PPS signal. | Minimum: GPS receiver that works with one's chosen software; this requires some combination of GPGGA, GPRMC, GPZDA, GPGSA, and GPGSV, sentences. Ideal: GPS receiver (OCXO/DOCXO disciplined clock preferred) with NMEA 0183 output on RS-232 or USB, with GPZDA sentence sent at least once a second, and 1PPS signal on DCD, which includes at least these devices: | |||
WWVB | UTC(NIST) | 60 kHz AM | IRIG "H" PWM time code with PM BPSK signal overlaid. [18] | Radio-controlled clock:
| |||
WWV | 2.5, 5, 10, 15, and 20 MHz AM | Voice with modified IRIG-H format time code on 100 Hz sub-carrier (CCIR code) |
|
| |||
WWVH | 5, 10, and 15 MHz AM | Voice with modified IRIG-H format time code on 100 Hz sub-carrier (CCIR code) |
| ||||
CHU | 3.33 MHz, 7.85 MHz, 14.67 MHz | Bell 103 modem tones, decodable by most computer modems |
| ||||
Daytime Protocol | UTC (variant depends on server's time source) |
| |||||
Time Protocol | |||||||
Network Time Protocol | pool.ntp.org | Computer with NTP client that syncs at least once an hour. | ntpd, sntp, ntpdate | ||||
NTPSec | |||||||
Precision Time Protocol |
| ||||||
NIST Telephone Time of Day Service [26] | UTC(NIST) |
| Voice announcement with sync pips. | Telephone connection, ear | n/a | Manual sync only. | |
NIST Automated Computer Time Service (ACTS) [27] |
| Windows computer with dialup modem. |
|
| |||
USNO Master Clock modem time [28] | +1-202-762-1594 | Computer with Bell 212A or CCITT V.22 compatible modem | |||||
US Naval Observatory time service | UTC(USNO) |
| ear | n/a |
The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radio navigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite systems (GNSS) that provide geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephone or Internet reception, though these technologies can enhance the usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although the United States government created, controls and maintains the GPS system, it is freely accessible to anyone with a GPS receiver.
A leap second is a one-second adjustment that is occasionally applied to Coordinated Universal Time (UTC), to accommodate the difference between precise time and imprecise observed solar time (UT1), which varies due to irregularities and long-term slowdown in the Earth's rotation. The UTC time standard, widely used for international timekeeping and as the reference for civil time in most countries, uses TAI and consequently would run ahead of observed solar time unless it is reset to UT1 as needed. The leap second facility exists to provide this adjustment. The leap second was introduced in 1972. Since then, 27 leap seconds have been added to UTC, with the most recent occurring on December 31, 2016. All have so far been positive leap seconds, adding a second to a UTC day; while it is possible for a negative leap second to be needed, one has not happened yet.
Time and frequency transfer is a scheme where multiple sites share a precise reference time or frequency. The technique is commonly used for creating and distributing standard time scales such as International Atomic Time (TAI). Time transfer solves problems such as astronomical observatories correlating observed flashes or other phenomena with each other, as well as cell phone towers coordinating handoffs as a phone moves from one cell to another.
A radio clock or radio-controlled clock (RCC), and often colloquially referred to as an "atomic clock", is a type of quartz clock or watch that is automatically synchronized to a time code transmitted by a radio transmitter connected to a time standard such as an atomic clock. Such a clock may be synchronized to the time sent by a single transmitter, such as many national or regional time transmitters, or may use the multiple transmitters used by satellite navigation systems such as Global Positioning System. Such systems may be used to automatically set clocks or for any purpose where accurate time is needed. Radio clocks may include any feature available for a clock, such as alarm function, display of ambient temperature and humidity, broadcast radio reception, etc.
Ultra-wideband is a radio technology that can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum. UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precise locating, and tracking. UWB support started to appear in high-end smartphones in 2019.
WWV is a shortwave radio station, located near Fort Collins, Colorado. It has broadcast a continuous time signal since 1945, and implements United States government frequency standards, with transmitters operating on 2.5, 5, 10, 15, and 20 MHz. WWV is operated by the U.S. National Institute of Standards and Technology (NIST), under the oversight of its Time and Frequency Division, which is part of NIST's Physical Measurement Laboratory based in Gaithersburg, Maryland.
WWVH is the callsign of the U.S. National Institute of Standards and Technology's shortwave radio time signal station located at the Barking Sands Missile Range, in Kekaha, on the island of Kauai in the state of Hawaii.
WWVB is a time signal radio station near Fort Collins, Colorado and is operated by the National Institute of Standards and Technology (NIST). Most radio-controlled clocks in North America use WWVB's transmissions to set the correct time.
JJY is the call sign of a low frequency time signal radio station located in Japan.
DCF77 is a German longwave time signal and standard-frequency radio station. It started service as a standard-frequency station on 1 January 1959. In June 1973 date and time information was added. Its primary and backup transmitter are located at 50°0′56″N9°00′39″E in Mainflingen, about 25 km south-east of Frankfurt am Main, Germany. The transmitter generates a nominal power of 50 kW, of which about 30 to 35 kW can be radiated via a T-antenna.
A real-time clock (RTC) is an electronic device that measures the passage of time.
Clock synchronization is a topic in computer science and engineering that aims to coordinate otherwise independent clocks. Even when initially set accurately, real clocks will differ after some amount of time due to clock drift, caused by clocks counting time at slightly different rates. There are several problems that occur as a result of clock rate differences and several solutions, some being more acceptable than others in certain contexts.
A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). As of 2024, four global systems are operational: the United States's Global Positioning System (GPS), Russia's Global Navigation Satellite System (GLONASS), China's BeiDou Navigation Satellite System (BDS), and the European Union's Galileo.
Many services running on modern digital telecommunications networks require accurate synchronization for correct operation. For example, if telephone exchanges are not synchronized, then bit slips will occur and degrade performance. Telecommunication networks rely on the use of highly accurate primary reference clocks which are distributed network-wide using synchronization links and synchronization supply units.
An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions between such states they interact with a very specific frequency of electromagnetic radiation. This phenomenon serves as the basis for the International System of Units' (SI) definition of a second:
The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency, , the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9192631770 when expressed in the unit Hz, which is equal to s−1.
Orolia was a global manufacturer of precision time and frequency instruments and network-centric equipment used in a wide range of industries.
The error analysis for the Global Positioning System is important for understanding how GPS works, and for knowing what magnitude of error should be expected. The GPS makes corrections for receiver clock errors and other effects but there are still residual errors which are not corrected. GPS receiver position is computed based on data received from the satellites. Errors depend on geometric dilution of precision and the sources listed in the table below.
Two independent clocks, once synchronized, will walk away from one another without limit. To have them display the same time it would be necessary to re-synchronize them at regular intervals. The period between synchronizations is referred to as holdover and performance under holdover relies on the quality of the reference oscillator, the PLL design, and the correction mechanisms employed.
A GPS clock, or GPS disciplined oscillator (GPSDO), is a combination of a GPS receiver and a high-quality, stable oscillator such as a quartz or rubidium oscillator whose output is controlled to agree with the signals broadcast by GPS or other GNSS satellites. GPSDOs work well as a source of timing because the satellite time signals must be accurate in order to provide positional accuracy for GPS in navigation. These signals are accurate to nanoseconds and provide a good reference for timing applications.
Standard frequency and time signal service is, according to Article 1.53 of the International Telecommunication Union's (ITU) Radio Regulations (RR), "A radiocommunication service for scientific, technical and other purposes, providing the transmission of specified frequencies, time signals, or both, of stated high precision, intended for general reception".
{{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: numeric names: authors list (link)