Electric clock

Last updated
Telechron synchronous electric clock manufactured around 1940. By 1940, the synchronous clock became the most common type of clock in the United States Telechron clock 2H07-Br Administrator.JPG
Telechron synchronous electric clock manufactured around 1940. By 1940, the synchronous clock became the most common type of clock in the United States

An electric clock is a clock that is powered by electricity, as opposed to a mechanical clock which is powered by a hanging weight or a mainspring. The term is often applied to the electrically powered mechanical clocks that were used before quartz clocks were introduced in the 1980s. The first experimental electric clocks were constructed around the 1840s, but they were not widely manufactured until mains electric power became available in the 1890s. In the 1930s, the synchronous electric clock replaced mechanical clocks as the most widely used type of clock.

Contents

Types

Electromechanical self-winding clock movement from Switzerland. Reform clock movement.JPG
Electromechanical self-winding clock movement from Switzerland.

Electric clocks can operate by several different types of mechanism:

History

One of Alexander Bain's early electromagnetic clocks, from the 1840s Bain-clock.jpg
One of Alexander Bain's early electromagnetic clocks, from the 1840s
Gents' of Leicester Pulsynetic, C40A, Waiting Train, Turret Clock (1940s/50?). Photographed in the Ministers' Building (The Secretariat), Yangon. YangonGents1.jpg
Gents' of Leicester Pulsynetic, C40A, Waiting Train, Turret Clock (1940s/50?). Photographed in the Ministers' Building (The Secretariat), Yangon.

In 1814, Sir Francis Ronalds of London invented the first electric clock. [3] It was powered with dry piles, a high voltage battery with extremely long life but the disadvantage of its electrical properties varying with the weather. [4] He trialled various means of regulating the electricity and these models proved to be reliable across a range of meteorological conditions. [5]

In 1815, Giuseppe Zamboni of Verona invented and showed another electrostatic clock run with dry pile batteries and an oscillating orb. His team produced improved clocks over many years, which were later denoted as "the most elegant and at the same time the most simple movement yet produced by the electric column". [6] Zamboni's clock had a vertical needle supported by a pivot and was so energy efficient that it could operate on one battery for over 50 years.

In 1840, Alexander Bain, a Scottish clock and instrument maker was the first to invent and patent a clock powered by electric current. His original electric clock patent is dated October 10, 1840. On January 11, 1841, Alexander Bain along with John Barwise, a chronometer maker, took out another important patent describing a clock in which an electromagnetic pendulum and an electric current is employed to keep the clock going instead of springs or weights. Later patents expanded on his original ideas.

Numerous people were intent on inventing the electric clock with electromechanical and electromagnetic designs around the year 1840, such as Wheatstone, Steinheil, Hipp, Breguet, and Garnier, both in Europe and America.

Matthäus Hipp , clockmaker born in Germany, is credited with establishing the production series, mass marketable electric clock. Hipp opened a workshop in Reutlingen, where he developed an electric clock to have the Hipp-Toggle, presented in Berlin at an exhibition in 1843. The Hipp-Toggle is a device attached to a pendulum or balance wheel that electro-mechanically allows occasional impulse or drive to the pendulum or wheel as its amplitude of swing drops below a certain level, and is so efficient that it was subsequently used in electric clocks for over a hundred years. Hipp also invented a small motor and built the chronoscope and the registering chronograph for time measurement.

The first electric clocks had prominent pendulums because this was a familiar shape and design. Smaller clocks and watches with a spiral-balance are made on the same principles as pendulum clocks.

In 1918, Henry Ellis Warren invented the first synchronous electric clock in Ashland, MA, which kept time from the oscillations of the power grid. [7] [8] In 1931, the Synclock was the first commercial synchronous electric clock sold in the UK. [8]

Electromechanical clock

Master clock from synchronized school clock system. c.1928 Electromechanical movement winds each minute and impulses slave clocks each minute. Operates on 24 Volts DC Standard Electric Time Co. Electromechanical Master Clock 01.jpg
Master clock from synchronized school clock system. c.1928 Electromechanical movement winds each minute and impulses slave clocks each minute. Operates on 24 Volts DC

A clock that employs electricity in some form to power a conventional clock mechanism is an electromechanical clock. Any spring or weight driven clock that uses electricity (either AC or DC) to rewind the spring or raise the weight of a mechanical clock then is an electromechanical clock. In electromechanical clocks the electricity serves no time keeping function. The timekeeping function is regulated by the pendulum. Near the end of the nineteenth century, the availability of the dry cell battery made it practical to use electric power in clocks. The use of electricity then led to many variations of clock and motor designs. Electromechanical clocks were made as individual timepieces but most commonly were used as integral parts of synchronized time installations. Experience in telegraphy led to connecting remote clocks (slave clocks) via wires to a controlling (master clock) clock. The goal was to create a clock system where each clock displayed exactly the same time. The master and the slaves are electromechanical clocks. The master clock has a conventional self-winding clock mechanism that is rewound electrically. The slave clock mechanism is not a conventional clock mechanism as it consists only of a ratchet wheel and time train. Slave clocks rely upon electrical impulses from the master clock to mechanically move the clock hands one unit of time. Synchronized time systems are made up of one master clock and any number of slave clocks. The slave clocks are connected by wires to the master clock. These systems are found in locations where multiple clocks would be used such as learning institutions, businesses, factories, transportation networks, banks, offices and government facilities. A notable example of this type of system is the Shortt-Synchronome clock, which is an example of an electromechanical gravity remontoire. These self-winding clock systems were usually low voltage DC. They were installed through the 1950s and by then systems with synchronous motor clocks were becoming the clock system of choice.

Electromagnetic clock

Early French electromagnetic clock Pendule electrique l maitrier 05117.jpg
Early French electromagnetic clock

The configuration of this device is comparatively very simple and reliable. The electric current powers either a pendulum or an electromechanical oscillator.

The electromechanical oscillator component has an attached magnet that passes two inductors. When the magnet passes the first inductor or sensor, the simple amplifier causes the current through the second inductor, and the second inductor works as an electromagnet, providing an energy pulse to the moving oscillator. This oscillator is responsible for the accuracy of the clock. The electronic part would not generate electrical pulses if the oscillator was absent or did not move. The resonant frequency of the mechanical oscillator should be several times per second.

Synchronous electric clock

Clock radio with synchronous clock, from the 1950s Clock radio.jpg
Clock radio with synchronous clock, from the 1950s

A synchronous electric clock does not contain a timekeeping oscillator such as a pendulum or balance wheel, but instead counts the oscillations of the AC utility current from its wall plug to keep time. It consists of a small AC synchronous motor, which turns the clock's hands through a reduction gear train. [9] The motor contains electromagnets which create a rotating magnetic field which turns an iron rotor. The rotation rate of the motor shaft is synchronized to the utility frequency; 60 cycles per second (Hz) in North America and parts of South America, 50 cycles per second in most other countries. The gear train scales this rotation so the minute hand rotates once per hour. Thus the synchronous clock can be regarded as not so much a timekeeper as a mechanical counter, whose hands display a running count of the number of cycles of alternating current. [9]

One of the gears turning the clock's hands has a shaft with a sliding friction fitting, so the clock's hands can be turned manually by a knob on the back or on the bottom, to set the clock.

Synchronous motor clocks are rugged because they do not have a delicate pendulum or balance wheel. However, a temporary power outage will stop the clock, which will show the wrong time when power is restored. Some synchronous clocks (e.g. Telechron) have an indicator which shows if it has stopped and restarted.

Number of poles

Some electric clocks have a simple two-pole synchronous motor which runs at one revolution per cycle of power, i.e., 3600  RPM at 60 Hz and 3000 RPM at 50 Hz. [10] However most electric clocks have rotors with more magnetic poles (teeth), consequently rotating at a smaller submultiple of line frequency. This allows the gear train which turns the hands to be built with fewer gears, saving money. [11]

Accuracy

The accuracy of synchronous clocks depends on how close electric utilities keep the frequency of their current to the nominal value of 50 or 60 hertz. Although utility load variations cause frequency fluctuations which may result in errors of a few seconds during the course of a day, utilities periodically adjust the frequency of their current using UTC atomic clock time so that the total number of cycles in a day gives an average frequency that is exactly the nominal value, so synchronous clocks do not accumulate error. [12] For example, European utilities control the frequency of their grid once a day to make the total number of cycles in 24 hours correct. [13] [ failed verification ] U.S. utilities correct their frequency once the cumulative error has reached 3–10 sec. This correction is known as the Time Error Correction (TEC).

The over 7-minute time error that would have developed in electric clocks over much of N. America had they not been reset after the March 2016 switch to Daylight Saving Time, and had TEC's not been utilized Hardis-Fonville-Matsakis-Fig8.jpg
The over 7-minute time error that would have developed in electric clocks over much of N. America had they not been reset after the March 2016 switch to Daylight Saving Time, and had TEC's not been utilized

In 2011, the North American Electric Reliability Corporation (NERC), [14] a consensus-based industry organization, petitioned the Federal Energy Regulatory Commission (FERC) [15] to eliminate the TEC. While this would have freed the power companies from the threat of fines and also provided an extremely modest increase in frequency stability, it was also noted that synchronous clocks, which include wall clocks, alarm clocks, and other clocks computing the time on the basis of their electrical power, would accumulate several minutes of error between the semi-annual resets for Daylight Saving Time. [16] This consequence was reported in the American news media, [17] and the initiative was dropped. However, in late 2016 a similar proposal was again filed by the NERC to the FERC, which was approved two months later. [12] It is contingent upon the removal of the standard WEQ-006, and the NERC also petitioned the North American Energy Standard Board (NAESB), [18] a non-governmental organization that is business-oriented, for removing that standard. If the FERC adopts the NAESB petition, TECs will no longer be utilized in the United States and Canada, and clocks timed by them will likely wander uncontrolled until manually reset, however as of 2021 WEQ-006 was still in place. [19] It was noted in a technical paper by employees of the National Institute of Standards and Technology and the U.S. Naval Observatory that, had TECs not been inserted in 2016, there would have been over seven minutes lost by electrically timed clocks over much of the United States and Canada, as shown in Figure 8 of their paper. [12]

Spin-start clocks

The earliest synchronous clocks from the 1930s were not self-starting, and had to be started by spinning a starter knob on the back. [9] A flaw in the design of these spin-start clocks was that the motor could be started in either direction, so if the starter knob was spun the wrong way the clock would run backwards, the hands turning counterclockwise. Later manual-start clocks had ratchets or other linkages which prevented backwards starting. The invention of the shaded-pole motor allowed self-starting clocks to be made, but since the clock would then restart after a power outage, the clock would give incorrect time instead of being stopped at the time of power interruption.

See also

Notes

  1. Elliott, Rod. "Build a Synchronous Clock". Elliott Sound.
  2. Brimarc, typical quartz clock movement specified accurate to within ±30 seconds/month Archived 2015-07-04 at the Wayback Machine
  3. Aked, C.K. (1973). "The First Electric Clock". Antiquarian Horology.
  4. Ronalds, B.F. (2016). Sir Francis Ronalds: Father of the Electric Telegraph. London: Imperial College Press. ISBN   978-1-78326-917-4.
  5. Ronalds, B.F. (Jun 2015). "Remembering the First Battery-Operated Clock". Antiquarian Horology. Retrieved 8 Apr 2016.
  6. Perpetual Electromotive
  7. U.S. patent #1283434 Warren, Henry E. Timing device, filed February 26, 1917, issued October 29, 1918, on Google Patents
  8. 1 2 "Famous Names in Electrical Horology". Electrical Horology Group. Antiquarian Horological Society, London, UK. 2011. Archived from the original on 2012-05-07. Retrieved 2011-12-16.
  9. 1 2 3 Wise, S. J. (1952). Electric Clocks, 2nd Ed (PDF). London: Heywood & Co. pp. 95–100.
  10. Wise (1952) Electric Clocks, p.101–104
  11. The speed of a synchronous motor v in revolutions per minute (RPM) is related to the number of poles by:
    where f is the line frequency (50/60 Hz) and p is the number of poles on the rotor. Many designs have 30 poles, so that the motor runs at 240 RPM (at 60 Hz) or 200 RPM (at 50 Hz).
  12. 1 2 3 4 NIST Paper
  13. "Frequency response - National Grid". www2.nationalgrid.com.
  14. "NERC". www.nerc.com.
  15. "Federal Energy Regulatory Commission". www.ferc.gov.
  16. http://www.gps.gov/cgsic/meetings/2011/matsakis.pdf [ bare URL PDF ]
  17. "Appliance disruptions feared in power grid test". CBS News . 27 June 2011.
  18. "North American Energy Standards Board". www.naesb.org.
  19. "NAESB Wholesale Electric Quadrant (WEQ) Update" (PDF).

Related Research Articles

<span class="mw-page-title-main">Clock</span> Instrument for measuring, keeping or indicating time

A clock or chronometer is a device used to measure and indicate time. The clock is one of the oldest human inventions, meeting the need to measure intervals of time shorter than the natural units such as the day, the lunar month, and the year. Devices operating on several physical processes have been used over the millennia.

<span class="mw-page-title-main">Pendulum clock</span> Clock regulated by a pendulum

A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is an approximate harmonic oscillator: It swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens, inspired by Galileo Galilei, until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries, pendulum clocks in homes, factories, offices, and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation. Their greater accuracy allowed for the faster pace of life which was necessary for the Industrial Revolution. The home pendulum clock was replaced by less-expensive synchronous electric clocks in the 1930s and '40s. Pendulum clocks are now kept mostly for their decorative and antique value.

<span class="mw-page-title-main">Watch</span> Personal timepiece

A watch is a portable timepiece intended to be carried or worn by a person. It is designed to keep a consistent movement despite the motions caused by the person's activities. A wristwatch is designed to be worn around the wrist, attached by a watch strap or other type of bracelet, including metal bands, leather straps, or any other kind of bracelet. A pocket watch is designed for a person to carry in a pocket, often attached to a chain.

<span class="mw-page-title-main">Electric generator</span> Device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.

<span class="mw-page-title-main">Clockwork</span> Mechanism of a clock

Clockwork refers to the inner workings of either mechanical devices called clocks and watches or other mechanisms that work similarly, using a series of gears driven by a spring or weight.

<span class="mw-page-title-main">Power inverter</span> Device that changes direct current (DC) to alternating current (AC)

A power inverter, inverter or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of rectifiers which were originally large electromechanical devices converting AC to DC.

<span class="mw-page-title-main">Synchronous motor</span> Type of AC motor

A synchronous electric motor is an AC electric motor in which, at steady state, the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integral number of AC cycles. Synchronous motors use electromagnets as the stator of the motor which create a magnetic field that rotates in time with the oscillations of the current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field. A synchronous motor is termed doubly fed if it is supplied with independently excited multiphase AC electromagnets on both the rotor and stator.

<span class="mw-page-title-main">Utility frequency</span> Frequency used on standard electricity grid in a given area

The utility frequency, (power) line frequency or mains frequency is the nominal frequency of the oscillations of alternating current (AC) in a wide area synchronous grid transmitted from a power station to the end-user. In large parts of the world this is 50 Hz, although in the Americas and parts of Asia it is typically 60 Hz. Current usage by country or region is given in the list of mains electricity by country.

<span class="mw-page-title-main">Timer</span> Type of clock

A timer is a specialized type of clock used for measuring specific time intervals.

<span class="mw-page-title-main">Escapement</span> Mechanism for regulating the speed of clocks

An escapement is a mechanical linkage in mechanical watches and clocks that gives impulses to the timekeeping element and periodically releases the gear train to move forward, advancing the clock's hands. The impulse action transfers energy to the clock's timekeeping element to replace the energy lost to friction during its cycle and keep the timekeeper oscillating. The escapement is driven by force from a coiled spring or a suspended weight, transmitted through the timepiece's gear train. Each swing of the pendulum or balance wheel releases a tooth of the escapement's escape wheel, allowing the clock's gear train to advance or "escape" by a fixed amount. This regular periodic advancement moves the clock's hands forward at a steady rate. At the same time, the tooth gives the timekeeping element a push, before another tooth catches on the escapement's pallet, returning the escapement to its "locked" state. The sudden stopping of the escapement's tooth is what generates the characteristic "ticking" sound heard in operating mechanical clocks and watches.

<span class="mw-page-title-main">DC motor</span> Motor which works on direct current

A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.

<span class="mw-page-title-main">Universal motor</span> Type of electric motor

The universal motor is a type of electric motor that can operate on either AC or DC power and uses an electromagnet as its stator to create its magnetic field. It is a commutated series-wound motor where the stator's field coils are connected in series with the rotor windings through a commutator. It is often referred to as an AC series motor. The universal motor is very similar to a DC series motor in construction, but is modified slightly to allow the motor to operate properly on AC power. This type of electric motor can operate well on AC because the current in both the field coils and the armature will alternate synchronously with the supply. Hence the resulting mechanical force will occur in a consistent direction of rotation, independent of the direction of applied voltage, but determined by the commutator and polarity of the field coils.

In mechanical horology, a remontoire is a small secondary source of power, a weight or spring, which runs the timekeeping mechanism and is itself periodically rewound by the timepiece's main power source, such as a mainspring. It was used in a few precision clocks and watches to place the source of power closer to the escapement, thereby increasing the accuracy by evening out variations in drive force caused by unevenness of the friction in the geartrain. In spring-driven precision clocks, a gravity remontoire is sometimes used to replace the uneven force delivered by the mainspring running down by the more constant force of gravity acting on a weight. In turret clocks, it serves to separate the large forces needed to drive the hands from the modest forces needed to drive the escapement which keeps the pendulum swinging. A remontoire should not be confused with a maintaining power spring, which is used only to keep the timepiece going while it is being wound.

<span class="mw-page-title-main">History of timekeeping devices</span>

The history of timekeeping devices dates back to when ancient civilizations first observed astronomical bodies as they moved across the sky. Devices and methods for keeping time have gradually improved through a series of new inventions, starting with measuring time by continuous processes, such as the flow of liquid in water clocks, to mechanical clocks, and eventually repetitive, oscillatory processes, such as the swing of pendulums. Oscillating timekeepers are used in all modern timepieces.

<span class="mw-page-title-main">Shortt–Synchronome clock</span> Precision pendulum clock invented by William Hamilton Shortt and Frank Hope-Jones

The Shortt–Synchronome free pendulum clock is a complex precision electromechanical pendulum clock invented in 1921 by British railway engineer William Hamilton Shortt in collaboration with horologist Frank Hope-Jones, and manufactured by the Synchronome Company, Ltd., of London. They were the most accurate pendulum clocks ever commercially produced, and became the highest standard for timekeeping between the 1920s and the 1940s, after which mechanical clocks were superseded by quartz time standards. They were used worldwide in astronomical observatories, naval observatories, in scientific research, and as a primary standard for national time dissemination services. The Shortt was the first clock to be a more accurate timekeeper than the Earth itself; it was used in 1926 to detect tiny seasonal changes in the Earth's rotation rate. Shortt clocks achieved accuracy of around a second per year, although a recent measurement indicated they were even more accurate. About 100 were produced between 1922 and 1956.

Telechron is the name of a U.S. company that manufactured electric clocks between 1912 and 1992. "Telechron" is derived from the Greek words tele, meaning "far off," and chronos, "time," thus referring to the transmission of time over long distances. Founded by Henry Ellis Warren, Telechron introduced the synchronous electric clock, which keeps time by the oscillations of the alternating current electricity that powers it from the electric power grid. Telechron had its heyday between 1925 and 1955, when it sold millions of electric clocks to American consumers.

<span class="mw-page-title-main">Electric watch</span> 1st generation electrically-powered wristwatch

In horology, the term electric watch is used for the first generation electrically-powered wristwatches which were first publicly displayed by both Elgin National Watch Company and Lip on March 19, 1952, with working laboratory examples in Chicago and Paris. The Hamilton Watch Company would be the first to produce and retail an electric watch beginning in 1957, before the commercial introduction of the quartz wristwatch in 1969 by Seiko with the Astron. Their timekeeping element was either a traditional balance wheel or a tuning fork, driven electromagnetically by a solenoid powered by a battery. The hands were driven mechanically through a wheel train. They were superseded by quartz watches, which had greater accuracy and durability due to their lower parts count. Recent automatic quartz watches, which combine mechanical technology with quartz timekeeping, are not included in this classification.

<span class="mw-page-title-main">Quartz clock</span> Clock type

Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. This crystal oscillator creates a signal with very precise frequency, so that quartz clocks and watches are at least an order of magnitude more accurate than mechanical clocks. Generally, some form of digital logic counts the cycles of this signal and provides a numerical time display, usually in units of hours, minutes, and seconds.

Inertial response is a property of large synchronous generators, which contain large synchronous rotating masses, and which acts to overcome any immediate imbalance between power supply and demand for electric power systems, typically the electrical grid. Due to the ever existing power imbalance between mechanical power supply and electric power demand the rotational frequency of the rotating masses in all synchronous generators in the grid either speed up and thus absorb the extra power in case of an excess power supply, or slow down and provide additional power in case of an excess power demand. This response in case of a synchronous generator is built-in into the design and happens without any external intervention or coordination, providing the automatic generation control and the grid operator with valuable time to rebalance the system The grid frequency is the combined result of the detailed motions of all individual synchronous rotors in the grid, which are modeled by a general equation of motion called the swing equation.

David Robertson was the first Professor of Electrical Engineering at Bristol University. Robertson had wide interests and one of these was horology – he wanted to provide the foundation of what we could call “horological engineering”, that is, a firm science-based approach to the design of accurate mechanical clocks. He contributed a long series on the scientific foundations of precision clocks to the Horological Journal which was the main publication for the trade in the UK; he and his students undertook research on clocks and pendulums ; and he designed at least one notable clock, to keep University time and control the chiming of Great George in the Wills Memorial Building from its inauguration on 1925, for which he also designed the chiming mechanism.

References