CHU (radio station)

Last updated
CHU
Broadcast area North America
Worldwide
Frequency 3.33 MHz, 7.85 MHz, 14.67 MHz
Programming
Language(s) English, French
Format Time
Ownership
Owner National Research Council of Canada
History
First air date
1923
Former call signs
9CC (1923-1928),
VE9CC (after 1928)
VE9OB (until 1938)
Technical information
Power 3 kW (3.33, 14.67 MHz), 5 kW (7.85 MHz)
Transmitter coordinates
45°17′41.3″N75°45′28.3″W / 45.294806°N 75.757861°W / 45.294806; -75.757861
Links
Website NRC Short Wave Station Broadcasts (CHU)

CHU is the call sign of a shortwave time signal radio station operated by the Institute for National Measurement Standards of the National Research Council. [1] CHU's signal is used for continuous dissemination of official Canadian government time signals, derived from atomic clocks.

Contents

History

Radio time signals allowed accurate and rapid distribution of time signals beyond the range of the telegraph or visual signals. This was of particular value in surveying remote areas, where time signals allowed accurate determination of longitude. In the summer of 1914, a survey party at Quinze Dam in the Ottawa River watershed attempted to receive time signals transmitted from Kingston; however, signals were not resolvable and the time signal from NAA in Arlington, Virginia was used instead. [2]

The station was started in 1923 by the Dominion Observatory in Ottawa, Ontario, Canada, with a call sign of 9CC on an experimental basis until 1928. Regular daytime transmission began under the callsign of VE9OB in January 1929 on a wavelength of 40.8 metres (about 7.353 MHz). [1] Continuous transmission at 90 metres began at the end of 1929, with other wavelengths being used experimentally. Time signals were generated from the observatory's own pendulum clocks. The transmitter oscillators were condenser-tuned and so frequency stability was not high until quartz crystal control was implemented in 1933.

In 1938 the call was changed to CHU, operating on frequencies of 3.33, 7.335 and 14.67 MHz, at a transmitter power of only 10 W. The 1,000 Hz tone imposed on the carrier was derived from the quartz oscillator that determined transmit frequency, but the seconds pulses were still derived from the observatory pendulum clocks.[ citation needed ] The station automatically sent its call sign in Morse code once per hour, and pulses were coded to identify the time of day. Since the CHU power was not high enough to cover much of Canada, including survey parties working in the North, observatory time signals were also transmitted by a Department of Transport station with 2 kW power. In 1947, three new transmitters with 300 W power were installed for the three frequencies, relocated to the station's present rural location. [1] In 1951, a Collins transmitter rated for 3 kW was put in service on 7.335 MHz. [2]

The purpose of the station was to provide accurate time-keeping information, especially to rural and remote areas that didn't have local access to accurate time. The station also pioneered the use of microwave and satellite communication to transmit its signal to remote areas. [1]

Initially, the signal consisted of a constant frequency interrupted by patterns of Morse Code pulses to indicate the time. In the 1930s, station identification via Morse Code was added to the transmission. [1] Since deciphering even a simple time code "by ear" was occasionally difficult under field conditions, voice announcements of time and station identification were added to CHU in 1952, using a speaking clock made by Ateliers Brillié Frères of France. Fredrick Martin Meach of the Canadian embassy in Paris recorded the time announcements in English, which were stored on strips of photographic film and played back under control of the observatory clocks. In 1960 the speaking clock was replaced with one manufactured by Audichron corporation and rented by the Dominion Observatory; this unit had more intelligible voice quality and lower maintenance. New English voice announcements were recorded by Harry Mannis of the Canadian Broadcasting Corporation. Bilingual announcements started in 1964, with French speech provided by Miville Couture of CBC Montreal. [2] The station switched to digital audio in the 1990s. [1]

Until 1959 the carrier frequency, tone frequency and second pulses were derived from independent sources, and the carrier stability as that of any commercial short wave transmitter. A divider chain was put into service so that all of the CHU signals were derived from Western Electric standard crystal oscillators with pulses for seconds monitored by continuous comparison with the observatory clocks. By 1978 all parts of the CHU transmitted signal were derived from an NRC-designed cesium beam frequency standard. [2]

Also in 1959, the 14.67 MHz transmitter was replaced with a new 20 kW unit. All site antennas were replaced with vertical antennas by 1971. The station continued to be operated by the Observatory until 1970, when its operation was transferred to the Institute for National Measurement Standards at the National Research Council.

Effective January 1, 2009, the 7.335 MHz frequency was changed to 7.85 MHz. The change was necessary due to an ITU HF global reallocation at the 2003 World Radio Conference (WRC-03), where the 7.3 MHz range was reallocated to broadcasting. The power output was later reduced from 10 kW to 5 kW due to complaints from New Zealand that the signal was causing interference on its new frequency. [1]

Transmission system

The station is unmanned and equipped with modified 1960s-era 10 kW transmitters and is controlled remotely from the National Research Council's headquarters on Montreal Road. [1]

CHU transmits 3 kW signals on 3.33 and 14.67 MHz, and a 5 kW signal on 7.85 MHz. [3] These nonstandard time signal frequencies were chosen to avoid interference from WWV and WWVH. The signal is amplitude modulated, with the lower sideband suppressed (emission type H3E). The same information is carried on all three frequencies simultaneously including announcements every minute, alternating between English and French. The CHU transmitter is located near Barrhaven, Ontario, 15 km (10 miles) southwest of Ottawa's central business district.

The systems feeding the transmitters are duplicated for reliability, and have both battery and generator protection. The generator can also supply the transmitters. The announcements are made using digitally recorded voices. Individual vertical dipole antennas are used for each frequency. CHU has long been licensed as a "fixed service" within the band allocations of the International Telecommunication Union.

As of 2020, CHU has three atomic clocks at the station, contained in a special enclosure to eliminate possible electromagnetic interference and compared with the atomic clocks at NRC's headquarters. [1]

CHU mails QSL cards to acknowledge listeners' reception reports. [1] [4]

Time signal format

CHU Recording at 7.85MHZ

The primary time signal is a series of 300 ms-long 1,000 Hz tones, transmitted once per second, on the second. The following exceptions to the pattern provide additional information:

The digital time code sends 10 characters at 300 bits per second using 8N2 asynchronous serial communication. This follows the Bell 103 standard, a 2,225 Hz tone to represent a mark (1 bit) and 2,025 Hz tone for a space (0 bit). Immediately after the 10 ms tick, a mark tone is sent until 133.3 ms, then 110 data bits, ending at precisely 500 ms. The final stop bit is extended by 10 ms of mark tone to ensure it is detected reliably, and the final 490 ms of the second are silent. [5] The time of day (day of year through second) is transmitted twice during each second from 32 to 39. During second 31, additional information (year, DUT1, daylight saving time, and leap second warning bits) is transmitted.

A similar National Research Council Time Signal was broadcast by the Canadian Broadcasting Corporation (CBC) radio services daily at noon ET on Radio-Canada's Première Chaîne , and 1 p.m. ET on CBC Radio One . Its last broadcast was on October 9, 2023. [6]

Western Canada signal coverage

CHU often cannot be received in Western Canada on any of its broadcast frequencies. Propagation conditions, low transmitter power coupled with the typical two ionospheric hops distances from Ottawa result in relatively weak time signals for Western Canada. Electromagnetic interference can further aggravate reception difficulty in urban areas in the West. CHU can be practically unusable in most of Western Canada, Nunavut, and the Northwest Territories, for significant stretches of time. U.S. stations WWV and WWVH are the fallback in Western Canada. In the high Arctic, however, both the U.S. shortwave time stations and CHU become essentially unusable or unreliable. Canada has no longwave time signal transmitters. The American station WWVB is the only option for reliable time signals during geomagnetic storms in the Western Arctic, based on WWVB's published pattern maps. If WWVB is not available, those who need precision time transfer may be able to use GPS time transfer instead.

See also

Related Research Articles

<span class="mw-page-title-main">Radio clock</span> Type of clock which self-synchronizes its time using dedicated radio transmitters

A radio clock or radio-controlled clock (RCC), and often colloquially referred to as an "atomic clock", is a type of quartz clock or watch that is automatically synchronized to a time code transmitted by a radio transmitter connected to a time standard such as an atomic clock. Such a clock may be synchronized to the time sent by a single transmitter, such as many national or regional time transmitters, or may use the multiple transmitters used by satellite navigation systems such as Global Positioning System. Such systems may be used to automatically set clocks or for any purpose where accurate time is needed. Radio clocks may include any feature available for a clock, such as alarm function, display of ambient temperature and humidity, broadcast radio reception, etc.

The Time from NPL is a radio signal broadcast from the Anthorn Radio Station near Anthorn, Cumbria, which serves as the United Kingdom's national time reference. The time signal is derived from three atomic clocks installed at the transmitter site, and is based on time standards maintained by the UK's National Physical Laboratory (NPL) in Teddington. The service is provided by Babcock International, under contract to the NPL. It was funded by the former Department for Business, Innovation and Skills; as of 2017 NPL Management Limited (NPLML) was owned by the Department for Business, Energy and Industrial Strategy (BEIS), and NPL operated as a public corporation.

<span class="mw-page-title-main">Time signal</span> Signal used as a reference to determine the time of day

A time signal is a visible, audible, mechanical, or electronic signal used as a reference to determine the time of day.

The Greenwich Time Signal (GTS), popularly known as the pips, is a series of six short tones broadcast at one-second intervals by many BBC Radio stations. The pips were introduced in 1924 and have been generated by the BBC since 1990 to mark the precise start of each hour. Their utility in calibration is diminishing as digital broadcasting entails time lags.

Radio VNG was Australia's national time signal service. It was inaugurated by the Australian Post Office at Lyndhurst, Victoria on 21 September 1964, although a predecessor service using the callsign VLX had begun in March 1946 alongside shortwave radio station VLR. From 1964 until 1987, Radio VNG transmitted on 4.5, 7.5 and 12 MHz from the Lyndhurst transmitters. After 1987 it relocated to Shanes Park, NSW, and transmitted on 2.5, 5, 8.638, 12.984, and 16 MHz.

<span class="mw-page-title-main">WWV (radio station)</span> U.S. government shortwave radio station broadcasting time signals

WWV is a shortwave radio station, located near Fort Collins, Colorado. It has broadcast a continuous time signal since 1945, and implements United States government frequency standards, with transmitters operating on 2.5, 5, 10, 15, and 20 MHz. WWV is operated by the U.S. National Institute of Standards and Technology (NIST), under the oversight of its Time and Frequency Division, which is part of NIST's Physical Measurement Laboratory based in Gaithersburg, Maryland.

<span class="mw-page-title-main">WWVH</span> Radio time signal station in Kekaha, Hawaii, United States

WWVH is the callsign of the U.S. National Institute of Standards and Technology's shortwave radio time signal station located at the Barking Sands Missile Range, in Kekaha, on the island of Kauai in the state of Hawaii.

WWVB is a time signal radio station near Fort Collins, Colorado and is operated by the National Institute of Standards and Technology (NIST). Most radio-controlled clocks in North America use WWVB's transmissions to set the correct time. The 70 kW ERP signal transmitted from WWVB is a continuous 60 kHz carrier wave, the frequency of which is derived from a set of atomic clocks located at the transmitter site, yielding a frequency uncertainty of less than 1 part in 1012. A one-bit-per-second time code, which is based on the IRIG "H" time code format and derived from the same set of atomic clocks, is then modulated onto the carrier wave using pulse-width modulation and amplitude-shift keying. A single complete frame of time code begins at the start of each minute, lasts one minute, and conveys the year, day of year, hour, minute, and other information as of the beginning of the minute.

RWM is the callsign of a high frequency (shortwave) standard frequency and time signal radio station in Moscow, Russia. It is controlled by All-Russian Scientific Research Institute for Physical-Engineering and Radiotechnical Metrology, and operated by Russian Television and Radio Broadcasting Network. Transmitting frequencies are 4.996 MHz with 5 kW and on 9.996 and 14.996 MHz with 8 kW.

JJY is the call sign of a low frequency time signal radio station located in Japan.

<span class="mw-page-title-main">DCF77</span> German time signal radio station

DCF77 is a German longwave time signal and standard-frequency radio station. It started service as a standard-frequency station on 1 January 1959. In June 1973 date and time information was added. Its primary and backup transmitter are located at 50°0′56″N9°00′39″E in Mainflingen, about 25 km south-east of Frankfurt am Main, Germany. The transmitter generates a nominal power of 50 kW, of which about 30 to 35 kW can be radiated via a T-antenna.

<i>National Research Council Time Signal</i> Canadian radio time signal

The National Research Council Time Signal was Canada's longest running radio program, begun 5 November 1939 until its final broadcast on 9 October 2023. Broadcast daily shortly before 13:00 Eastern Time across the CBC Radio One network, it lasted between 15 and 60 seconds, ending exactly at 13:00. During standard time, the signal was at 13:00 Eastern Standard Time and during Daylight Saving Time, the signal was at 13:00 Eastern Daylight Saving Time.

<span class="mw-page-title-main">YVTO</span>

<span class="mw-page-title-main">DUT1</span> Time scale with correction

DUT1 is a time correction equal to the difference between Universal Time (UT1), which is defined by Earth's rotation, and Coordinated Universal Time (UTC), which is defined by a network of precision atomic clocks.

<span class="mw-page-title-main">ALS162 time signal</span> French longwave time signal radio station

ALS162 is a French longwave time signal and standard-frequency radio station and is used for the dissemination of the Metropolitan French national legal time to the public. TéléDiffusion de France broadcast the ALS162 time signal, provided by LNE-SYRTE and LNE-LTFB time laboratories under ANFR responsibility, from the Allouis longwave transmitter at 162 kHz, with a power of 800 kW.

HLA is a time signal radio station in Daejeon, South Korea, operated by the Korea Research Institute of Standards and Science. Established on November 24, 1984, it transmits a 2 kW signal on 5 MHz (±0.01 Hz). Originally only transmitted for 7 hours per day (01:00–08:00), 5 days per week (M–F), it is continuous as of 2011. There are over 100 users of the signal in Korea.

<span class="mw-page-title-main">Coordinated Universal Time</span> Primary time standard

Coordinated Universal Time or UTC is the primary time standard by which the world regulates clocks and time. It is within about one second of mean solar time at 0° longitude and is not adjusted for daylight saving time. It is effectively a successor to Greenwich Mean Time (GMT).

RBU is a time code radio station located in Moscow. It transmits a continuous 10 kW time code on 66⅔ kHz. This is commonly written as 66.66 or 66.666 kHz, but is actually 200/3 kHz. Until 2008, the transmitter site was near Kupavna 55°44′04″N38°9′0″E and used as antenna three T-antennas spun between three 150 metres tall grounded masts. In 2008, it has been transferred to the Taldom transmitter at 56°44′00″N37°39′48″E.

​JN53dv is the Maidenhead grid square of an experimental shortwave time signal station in Italy. It is located in the town of Corsanico-Bargecchia near Massarosa and operated by Italcable

BSF is the callsign of the time signal transmitter owned by the National Time and Frequency Standards Laboratory of the Ministry of Economic Affairs (Taiwan), which transmits time information on 77.5 kHz in the longwave range. It was launched on May 1, 1969 and is broadcast from Zhongli District in Taichung using a T-antenna located at 25°0′20″N121°21′54″E.

References

  1. 1 2 3 4 5 6 7 8 9 10 Careless, James (December 5, 2020). "CHU, Canada's Time Station". Radio World . Retrieved December 7, 2020.
  2. 1 2 3 4 Malcolm M. Thomson, The Beginning of the Long Dash: A History of Timekeeping in Canada, University of Toronto Press, 1978, ISBN   0-8020-5383-1,1 Chapter 6
  3. Marten, M. (2011). Spezial-Frequenzliste 2011-2012, Band 2 (in German). Meckenheim, Germany: Siebel Verlag. pp. 83, 259, 436. ISBN   978-3-88180-692-3.
  4. NRC short wave station broadcasts (CHU)
  5. 1 2 "CHU Broadcast Codes". National Research Council of Canada, Institute for National Measurement Standards. 2012-10-12. Retrieved 2017-03-10.
  6. Taekema, Dan (2023-10-10). "The end of the long dash: CBC stops broadcasting official 1 p.m. time signal". CBC News. Retrieved 2023-11-10.