Time from NPL (MSF)

Last updated
Cumbria UK location map.svg
Red pog.svg
Map showing the location of the Anthorn VLF transmitter in Cumbria.

The Time from NPL is a radio signal broadcast from the Anthorn Radio Station near Anthorn, Cumbria, which serves as the United Kingdom's national time reference. [1] The time signal is derived from three atomic clocks installed at the transmitter site, and is based on time standards maintained by the UK's National Physical Laboratory (NPL) in Teddington. [2] The service is provided by Babcock International (which acquired former providers VT Communications), under contract to the NPL. It was funded by the former Department for Business, Innovation and Skills; [1] [3] as of 2017 NPL Management Limited (NPLML) was owned by the Department for Business, Energy and Industrial Strategy (BEIS), and NPL operated as a public corporation. [4]

Contents

The signal, also known as the MSF signal (and formerly the Rugby clock), is broadcast at a highly accurate frequency of 60 kHz and can be received throughout the UK, and in much of northern and western Europe. The signal's carrier frequency is maintained at 60 kHz to within 2 parts in 1012, controlled by caesium atomic clocks at the radio station. [1]

History

Received, at Lesvos Island, during the transfer from Rugby to Anthorn Rugby Anthorn MSF.jpg
Received, at Lesvos Island, during the transfer from Rugby to Anthorn

A radio station at Rugby was first operated by the Post Office from 1926, with the call-sign GBR. From 19 December 1927, it broadcast a 15.8 kHz time signal from the Royal Observatory which could be received worldwide. It consisted of 306 pulses in the five minutes up to and including 10:00 and 18:00 GMT, with a longer pulse at the start of each minute. Frequency-shift keying was added in 1967, making the signal harder to use as a frequency reference. The time signals, preceded by the callsign "GBR GBR TIME" in Morse code, were transmitted during the 5 minutes preceding 03:00, 09:00, 15:00 and 21:00. Transmitter GBZ on 19.6 kHz was used as a reserve, when GBR was off-air for maintenance. [5] Eventually, time signals from GBR were terminated in November 1986 and it is no longer used as a frequency reference. [6]

The MSF signals started in 1950, following the transmission pattern described below. They were originally intended to provide frequency references at 2.5, 5 and 10 MHz, originally only occasionally during the day. At first, there were announcements every fifteen minutes, beginning with the Morse code representation of "MSF MSF MSF" (MSF is "-- ··· ··-·" in Morse code), followed by speech "This is MSF, Rugby, England, transmitting ...". [7] From May 1953, the signal was broadcast 24 hours a day, but with regular five-minute stoppages to allow the reception of other signals. The 60 kHz signal finally became an uninterrupted 24-hour service in 1966, and the frequency references were discontinued in February 1988. [6]

On 27 February 2007 the NPL started tests of the new time signal transmissions from Anthorn 54°55′N3°17′W / 54.91°N 3.28°W / 54.91; -3.28 . [8] The Anthorn station was operated by VT Communications from its opening in 2007 until 2010, when it was acquired by Babcock International. [9]

The formal inauguration of the relocated facility took place on 1 April 2007, when the name of the service became "The Time from NPL" and the signal from Rugby was permanently switched off. [10] [11] The change in location and consequent change in signal strength can make some equipment designed to use the MSF signal fail to continue doing so. This is found more in domestic equipment not designed for optimum sensitivity and positioned haphazardly.[ citation needed ] Currently, the signal from Anthorn is still useable, in the location of the Mediterranean, although it is weaker than Rugby.

The 'MSF signal' and the 'Rugby clock'

From the time signal's inauguration in 1950 until 1 April 2007 it was transmitted from Rugby Radio Station near Rugby, Warwickshire. [6] [12] The transmitter's original location meant that the clock was referred to as "the Rugby clock". [13] Following its relocation in 2007 to Cumbria, the NPL now formally calls the signal "The Time from NPL". [12]

The Rugby transmitter's callsign was MSF, where 'M' is one of the ITU prefixes allocated to the United Kingdom, and the letters 'SF' were allocated for no documented reason. This resulted in the common terminology "the MSF signal", which is still used by the NPL. [6] The official history of the service says that "Rugby was given an additional commitment for the transmission of reference Modulated Standard Frequencies", but no actual explanation is given for the call sign "MSF". [14] According to the NPL it seems the call sign was chosen so that it could be memorized as "Master Standard Frequency" but MSF was not intended to be an abbreviation. [15]

Transmission and reception

The transmitted signal has an effective radiated power of 17 kW, on a frequency of 60 kHz to within 2 parts in 1012. [1] The signal strength is greater than 10 mV/m at 100 km (60 miles); it is greater than 100 μV/m at 1,000 km (600 miles) from the transmitter, and thus can be received at not less than this strength throughout the UK. [12] The signal can also be received, and is widely used, in northern and western Europe. [1]

While at Rugby, the transmitter generated 60 kW of radio frequency power (using 70 kW of mains power). The 180 metre-high (590') T-aerial antenna was 500 metres (1640') across at its top. The vertical part of the antenna radiated the signal, so that the received strength was similar in all directions (it was approximately omnidirectional). [6]

Uses

In addition to professional uses where accurate time is required, radio-controlled clocks (including wristwatches) with both digital and analog displays using the NPL signal are widely used. (Similar clocks are available in other regions with standard time transmissions.) As far as users are concerned they are simply clocks with the same features and settings as others, but always display the right time, and correct themselves for summer time.

Protocol

Fast code

When MSF was first introduced, in 1950, it consisted only of seconds and minute markers, with no coded data. In 1974, a short burst of binary code at 100 bit/s was inserted into the minute marker to specify the time. In 1977, a slow code was introduced, which encoded the time at 1 bit/s over the whole minute (as detailed below). In 1998, the original fast code was removed, leaving the slow code and a simple minute marker. [16]

Slow code

Currently, the signal is encoded as follows:

The MSF transmitter is switched off for brief intervals (on-off keying) near the beginning of each second to encode the current time and date. The rise and fall times of the 60 kHz carrier are determined by the combination of antenna and transmitter. [17]

Each UTC second begins with 100 ms of 'off', preceded by at least 500 ms of carrier. The second marker is transmitted with an accuracy better than ±1 ms relative to Coordinated Universal Time (UTC), which is itself always within ±0.9 seconds of Universal Time (UT1) which is the mean solar time which would actually be observed at 0° longitude.

The first second of the minute, denoted second 00, begins with a period of 500 ms with the carrier off, to serve as a minute marker.

The other 59 (or, exceptionally, 60 or 58) seconds of the minute always begin with at least 100 ms 'off', followed by two data bits of 100 ms each, and end with at least 700 ms of carrier.

Negative Polarity Bit Signalling

If each second is considered as ten 100 ms pieces, the minute marker is transmitted as 1111100000, while all other seconds are transmitted as 1AB0000000.

Although two data bits are transmitted per second, the time code has the property that only one of them is variable; non-zero B bits are only transmitted when the corresponding A bit has a fixed value.

Seconds 01–16 carry information for the current minute about the difference (DUT1) between atomic and astronomical time, and the remaining seconds convey the time and date code.

The time and date code information begins 43 seconds before the corresponding minute marker (second 17 of the previous minute, in the absence of leap seconds), and is always given in terms of UK civil time, which is UTC in winter and UTC+1h when Summer Time is in effect.

MSF time code
Shaded bits are fixed
 Bit  A  B Meaning Bit  A  B Meaning Bit  A  B Meaning
0011Minute mark20100Year
(00–99)
40100Hour
(00–23)
010+0.1DUT1
(0.1–0.8)
Unary encoding,
bit set if
DUT1 ≥ Weight
21804180
020+0.222404240
030+0.323204320
040+0.424104410
050+0.525100Month
(01–12)
45400Minute
(00–59)
060+0.6268046200
070+0.7274047100
080+0.828204880
090−0.1DUT1
(−0.1–−0.8)
Unary encoding,
bit set if
DUT1 ≤ Weight
29104940
100−0.230200Day of month
(01–31)
5020
110−0.3311005110
120−0.432805200Minute marker 01111110
130−0.53340531STWSummer time warning.
140−0.63420541P1Year (17A–24A) Odd
parity

over
150−0.73510551P2Day (25A–35A)
160−0.83640Day of week
Sunday=0
Saturday=6
561P3DOW (36A–38A)
17800Year (00–99)3720571P4Time (39A–51A)
184003810581STSummer time in effect.
1920039200Hour (00–23)5900Unused, always 0.

Consecutive bits from 01B–08B are set to 1 to indicate positive DUT1 values from +0.1s to +0.8s. For example, bit 05B is set if DUT1 ≥ 0.5 s. Consecutive bits from 09B–16B are set to 1 to indicate negative DUT1 values from −0.1s to −0.8s. For example, bit 11B is set if DUT1 ≤ −0.3 s.

In case of a leap second, a zero bit is inserted between seconds 16 and 17. [17] In case of a negative leap second, second 16 will be deleted. Since negative leap seconds can only occur when DUT1 is positive, bits 9B through 16B will be zero.

Bits 17A–51A encode the time of the following minute in binary-coded decimal, most significant bit first. Beginning with bit 17A comes 4 bits of tens of years, 4 bits of years, 1 bit of tens of months, 4 bits of months, 2 bits of tens of days, 4 bits of days, 3 bits of day of week (0=Sunday), 2 bits of tens of hours, 4 bits of hours, 3 bits of tens of minutes, and 4 bits of minutes.

Bits 52A–59A provide another way to identify minute boundaries. This sequence 01111110 never appears elsewhere in the A bits; due to BCD encoding, at most five consecutive 1 bits can appear elsewhere in the A bits (bits 27A–31A, on July 30 or 31, or bits 33A–37A, if a day ending in 7 falls on a Saturday). These six consecutive 1 bits thus uniquely identify the end of the minute.

Bits 54B–57B provide odd parity over the time code. The 4 parity bits cover years (8 bits), months and days (11 bits), day of week (3 bits), and time of day (13 bits) respectively.

Bit 58B indicates the broadcast time is summer time. Bit 53B gives warning that the summer time bit is about to change. It is set for 61 consecutive minutes, starting 1 hour 7 seconds before the change, and ending 7 seconds before the change, 5 seconds before the first changed bit 58B, which is itself transmitted 2 seconds (1.7–1.8 seconds, to be more precise) before the moment of the time change.

Shortcomings of the current signal format

MSF does not broadcast any explicit advance warning of upcoming leap seconds, which occur less than once a year on average. [3] The only indication is a change in the number of padding bits before the time code during the minute before the leap second. Therefore, unless a leap-second announcement is manually entered into a receiver in advance, it may take some time until an autonomous MSF receiver regains synchronization with UTC after a leap second (especially if the reception is not robust at the time of the leap second).

Like DCF77, the time signal only provides 1 hour warning of summer-time changes. [17]

Outages

MSF normally broadcasts continuously, but is occasionally taken out of service for scheduled or unscheduled maintenance. The Time from NPL Web site reports upcoming scheduled maintenance outages, and information on unscheduled outages. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Radio clock</span> Type of clock which self-synchronizes its time using dedicated radio transmitters

A radio clock or radio-controlled clock (RCC), and often colloquially referred to as an "atomic clock", is a type of quartz clock or watch that is automatically synchronized to a time code transmitted by a radio transmitter connected to a time standard such as an atomic clock. Such a clock may be synchronized to the time sent by a single transmitter, such as many national or regional time transmitters, or may use the multiple transmitters used by satellite navigation systems such as Global Positioning System. Such systems may be used to automatically set clocks or for any purpose where accurate time is needed. Radio clocks may include any feature available for a clock, such as alarm function, display of ambient temperature and humidity, broadcast radio reception, etc.

CHU is the call sign of a shortwave time signal radio station operated by the Institute for National Measurement Standards of the National Research Council. CHU's signal is used for continuous dissemination of official Canadian government time signals, derived from atomic clocks.

<span class="mw-page-title-main">WWV (radio station)</span> U.S. government shortwave radio station

WWV is a shortwave radio station, located near Fort Collins, Colorado. It has broadcast a continuous time signal since 1945, and implements United States government frequency standards, with transmitters operating on 2.5, 5, 10, 15, and 20 MHz. WWV is operated by the U.S. National Institute of Standards and Technology (NIST), under the oversight of its Time and Frequency Division, which is part of NIST's Physical Measurement Laboratory based in Gaithersburg, Maryland.

WWVB is a time signal radio station near Fort Collins, Colorado and is operated by the National Institute of Standards and Technology (NIST). Most radio-controlled clocks in North America use WWVB's transmissions to set the correct time.

RWM is the callsign of a high frequency (shortwave) standard frequency and time signal radio station in Moscow, Russia. It is controlled by All-Russian Scientific Research Institute for Physical-Engineering and Radiotechnical Metrology, and operated by Russian Television and Radio Broadcasting Network. Transmitting frequencies are 4.996 MHz with 5 kW and on 9.996 and 14.996 MHz with 8 kW.

<span class="mw-page-title-main">JJY</span> Japanese time signal radio station

JJY is the call sign of a low frequency time signal radio station located in Japan.

<span class="mw-page-title-main">DCF77</span> German time signal radio station

DCF77 is a German longwave time signal and standard-frequency radio station. It started service as a standard-frequency station on 1 January 1959. In June 1973 date and time information was added. Its primary and backup transmitter are located at 50°0′56″N9°00′39″E in Mainflingen, about 25 km south-east of Frankfurt am Main, Germany. The transmitter generates a nominal power of 50 kW, of which about 30 to 35 kW can be radiated via a T-antenna.

<span class="mw-page-title-main">Rugby Radio Station</span> British government radio transmission facility

Rugby Radio Station was a large British government radio transmission facility just east of the Hillmorton area of the town of Rugby, Warwickshire in England. The site straddled the A5 trunk road, with most of it in Warwickshire, and part on the other side of the A5 in Northamptonshire. First opened in 1926, at its height in the 1950s it was the largest radio transmitting station in the world, with a total of 57 radio transmitters, covering an area of 1,600 acres (650 ha). Traffic slowly dwindled from the 1980s onwards, and the site was closed between 2003 and 2007.

<span class="mw-page-title-main">Anthorn Radio Station</span> Radio station transmitting the UK time signal

Anthorn Radio Station is a naval and government radio transmitting station located near Anthorn, Cumbria, England, overlooking the Solway Firth, and is operated by Babcock International. It has three transmitters: one VLF; one LF; and an eLORAN transmitter.

Beta is a time signal service in the VLF range in Russia, operated by the Russian Navy. It is controlled by All-Russian Scientific Research Institute for Physical-Engineering and Radiotechnical Metrology. There are 6 transmitter stations, which take turns transmitting time signals and other communications.

<span class="mw-page-title-main">DUT1</span> Time scale with correction

DUT1 is a time correction equal to the difference between Universal Time (UT1), which is defined by Earth's rotation, and Coordinated Universal Time (UTC), which is defined by a network of precision atomic clocks.

VT Communications was a company that was a part of VT Group plc. VT Communications was essentially formed as a result of the privatization of the BBC World Service transmitter sites. It was initially named Merlin Communications, then, after acquisition by VT, VT Merlin Communications. It provided transmission services to over 20 different customers from four main sites in the United Kingdom and many others in the rest of the world.

<span class="mw-page-title-main">ALS162 time signal</span> French longwave time signal radio station

ALS162 is a French longwave time signal and standard-frequency radio station and is used for the dissemination of the Metropolitan French national legal time to the public. TéléDiffusion de France broadcast the ALS162 time signal, provided by LNE-SYRTE and LNE-LTFB time laboratories under ANFR responsibility, from the Allouis longwave transmitter at 162 kHz, with a power of 800 kW.

<span class="mw-page-title-main">HBG (time signal)</span> Time signal radio station in Switzerland

HBG was a low frequency time signal transmitter for the Swiss time reference system. It transmitted on 75 kHz with 20 kW power, and was located in Prangins, Switzerland.

<span class="mw-page-title-main">Casio Wave Ceptor</span> Radio-controlled wristwatch brand

The Wave Ceptor series is a line of radio-controlled watches by Casio. Wave Ceptor watches synchronise with radio time signals broadcast by various government time services around the world. These signals transmit the time measured by atomic clocks accurate to one second in millions of years. By synchronizing daily with the signals, the Wave Ceptor watches achieve high accuracy, using a quartz crystal to keep time in the interim. Some radio watches, including some Wave Ceptors, are solar-powered, supported by a rechargeable battery. The watch displays may be fully digital, analog, or analog-digital. Hybrid Wave Ceptor models support GPS satellite reception of both time and location, in addition to broadcast signals.

HLA is a time signal radio station in Daejeon, South Korea, operated by the Korea Research Institute of Standards and Science. Established on November 24, 1984, it transmits a 2 kW signal on 5 MHz (±0.01 Hz). Originally only transmitted for 7 hours per day (01:00–08:00), 5 days per week (M–F), it is continuous as of 2011. There are over 100 users of the signal in Korea.

RBU is a time code radio station located in Moscow. It transmits a continuous 10 kW time code on 66⅔ kHz. This is commonly written as 66.66 or 66.666 kHz, but is actually 200/3 kHz. Until 2008, the transmitter site was near Kupavna 55°44′04″N38°9′0″E and used as antenna three T-antennas spun between three 150 metres tall grounded masts. In 2008, it has been transferred to the Taldom transmitter at 56°44′00″N37°39′48″E.

BPC is the callsign of a time signal broadcasting from the BPC Shangqiu Low-Frequency Time-Code Radio Station, cooperatively constructed by the National Time Service Center of the Chinese Academy of Sciences and Xi'an Gaohua Technology Co., Ltd., beginning April 25, 2002.

​JN53dv is the Maidenhead grid square of an experimental shortwave time signal station in Italy. It is located in the town of Corsanico-Bargecchia near Massarosa and operated by Italcable

BSF is the callsign of the time signal transmitter owned by the National Time and Frequency Standards Laboratory of the Ministry of Economic Affairs (Taiwan), which transmits time information on 77.5 kHz in the longwave range. It was launched on May 1, 1969 and is broadcast from Zhongli District in Taichung using a T-antenna located at 25°0′20″N121°21′54″E.

References

  1. 1 2 3 4 5 "NPL Time Metrology". National Physical Laboratory, UK. Archived from the original on 27 June 2013. Retrieved 8 February 2012.
  2. "MSF The Time from NPL" (PDF). National Physical Laboratory, UK. Archived from the original on October 31, 2007. Retrieved 6 April 2007.{{cite web}}: CS1 maint: unfit URL (link)
  3. 1 2 Thomas, Roger (July 2014). "MSF and the NPL". Radio User. Bournemouth UK: PW Publishing Ltd: 47–49. ISSN   1748-8117.
  4. "What is NPL?". National Physical Laboratory. Archived from the original on 26 June 2015. Retrieved 9 October 2017.
  5. Gerd Klawitter (1980). List of Time Signal Stations (9th ed.). pp. 30–31.
  6. 1 2 3 4 5 "NPL T&F: FAQs". National Physical Laboratory, UK. Archived from the original on 6 June 2009. Retrieved 23 January 2008.
  7. "NPL Time Reference FAQ". NPL. Archived from the original on 22 April 2014. Retrieved 20 January 2014.
  8. Kelly Eve (28 February 2007). "Time Begins in Anthorn Village". News & Star. Carlisle. Archived from the original on 10 August 2007. Retrieved 28 February 2007.
  9. 1 2 "MSF Radio Time Signal". National Physical Laboratory. Archived from the original on 2019-07-05. Retrieved 1 May 2022. General and technical information, advice on reception problems, and up-to-date information on signal outages and scheduled maintenance
  10. Pallab Ghosh (10 May 2006). "Times changing for radio signal". BBC News Online. Archived from the original on 2 January 2007. Retrieved 28 March 2007.
  11. "Time change marks end of an era". BBC News Online. 25 March 2007. Archived from the original on 27 March 2007. Retrieved 28 March 2007.
  12. 1 2 3 "Time Has Moved". National Physical Laboratory, UK. Archived from the original on September 27, 2007. Retrieved 6 April 2007.{{cite web}}: CS1 maint: unfit URL (link)
  13. "ARM+FPGA based Rugby clock". Computer Laboratory, University of Cambridge. Archived from the original on 2 June 2007. Retrieved 6 April 2007.
  14. "The Official History of Rugby Radio Station". Archived from the original on 2004-12-14. Retrieved 2005-01-05.
  15. "NPL FAQ "What does MSF stand for?"". Archived from the original on 2014-04-22. Retrieved 2014-01-20.
  16. National Physical Laboratory (25 March 2010). "What is the MSF fast code? (FAQ-Time)". Archived from the original on 22 September 2018. Retrieved 22 September 2018.
  17. 1 2 3 "MSF 60 kHz Time and Date Code" (PDF). NPL Time and Frequency Services. National Physical Laboratory. July 2007. TAF001v06. Archived (PDF) from the original on 28 July 2008. Retrieved 26 May 2008.