Timeline of the development of tectonophysics (before 1954)

Last updated

The evolution of tectonophysics is closely linked to the history of the continental drift and plate tectonics hypotheses. The continental drift/ Airy-Heiskanen isostasy hypothesis had many flaws and scarce data. The fixist/ Pratt-Hayford isostasy, the contracting Earth and the expanding Earth concepts had many flaws as well.


The idea of continents with a permanent location, the geosyncline theory, the Pratt-Hayford isostasy, the extrapolation of the age of the Earth by Lord Kelvin as a black body cooling down, the contracting Earth, the Earth as a solid and crystalline body, is one school of thought. A lithosphere creeping over the asthenosphere is a logical consequence of an Earth with internal heat by radioactivity decay, the Airy-Heiskanen isostasy, thrust faults and Niskanen's mantle viscosity determinations.


In 1858, Snider-Pellegrini made these two maps. They depict his interpretation of how the American and African continents may once have fit together before subsequently becoming separated. Antonio Snider-Pellegrini Opening of the Atlantic.jpg
In 1858, Snider-Pellegrini made these two maps. They depict his interpretation of how the American and African continents may once have fit together before subsequently becoming separated.
Airy model of isostasy: 1. thickness of the crust under mountains, 2. lower mountains, 3. thickness of normal continental crust, 4. thickness of oceanic crust, 5. sealevel, 6. pieces of the Earth's crust, 7. asthenosphere. Isostasy.svg
Airy model of isostasy: 1. thickness of the crust under mountains, 2. lower mountains, 3. thickness of normal continental crust, 4. thickness of oceanic crust, 5. sealevel, 6. pieces of the Earth's crust, 7. asthenosphere.

Christian creationism (Martin Luther) was popular until the 19th century, and the age of the Earth was thought to have been created circa 4,000 BC. There were stacks of calcareous rocks of maritime origin above sea level, and up and down motions were allowed (geosyncline hypothesis, James Hall and James D. Dana). Later on, the thrust fault concept appeared, and a contracting Earth (Eduard Suess, James D. Dana, Albert Heim) was its driving force. In 1862, the physicist William Thomson (who later became Lord Kelvin) calculated the age of Earth (as a cooling black body) at between 20 million and 400 million years. In 1895, John Perry produced an age of Earth estimate of 2 to 3 billion years old using a model of a convective mantle and thin crust. [1] Finally, Arthur Holmes published The Age of the Earth, an Introduction to Geological Ideas in 1927, in which he presented a range of 1.6 to 3.0 billion years.

Wegener had data for assuming that the relative positions of the continents change over time. It was a mistake to state the continents "plowed" through the sea, although it isn't sure that this fixist quote is true in the original in German. He was an outsider with a doctorate in astronomy attacking an established theory between 'geophysicists'. The geophysicists were right to state that the Earth is solid, and the mantle is elastic (for seismic waves) and inhomogeneous, and the ocean floor would not allow the movement of the continents. But excluding one alternative, substantiates the opposite alternative: passive continents and an active seafloor spreading and subduction, with accretion belts on the edges of the continents. The velocity of the sliding continents, was allowed in the uncertainty of the fixed continent model and seafloor subduction and upwelling with phase change allows for inhomogeneity.

The problem too, was the specialisation. Arthur Holmes and Alfred Rittmann saw it right ( Rittmann 1939 ). Only an outsider can have the overview, only an outsider sees the forest, not only the trees ( Hellman 1998b , p. 145). But A. Wegener did not have the specialisation to correctly weight the quality of the geophysical data and the paleontologic data, and its conclusions. Wegener's main interest was meteorology, and he wanted to join the Denmark-Greenland expedition scheduled for mid 1912. So he hurried up to present his Continental Drift hypothesis. [2]

Mainly Charles Lyell, Harold Jeffreys, James D. Dana, Charles Schuchert, Chester Longwell, and the conflict with the Axis powers slowed down the acceptance of continental drifting. [3]


Triassic, Ladinian stage (230 Ma). 230 Ma plate tectonic reconstruction.png
Triassic, Ladinian stage (230 Ma).
Distribution of modern-day Glossopteris fossils (#1: South America, #2: Africa, #3: Madagascar, #4: Indian subcontinent, #5: Antarctica, #6: Australia). Pangaea Glossopteris.jpg
Distribution of modern-day Glossopteris fossils (#1: South America, #2: Africa, #3: Madagascar, #4: Indian subcontinent, #5: Antarctica, #6: Australia).
Mineralogy igneous rocks. Mineralogy igneous rocks EN.svg
Mineralogy igneous rocks.
A diagram of folds, indicating an anticline and a syncline. Antecline (PSF).png
A diagram of folds, indicating an anticline and a syncline.

See also

Further reading

Related Research Articles

Continental drift is the hypothesis that the Earth's continents have moved over geologic time relative to each other, thus appearing to have "drifted" across the ocean bed. The idea of continental drift has been subsumed into the science of plate tectonics, which studies the movement of the continents as they ride on plates of the Earth's lithosphere.

<span class="mw-page-title-main">Plate tectonics</span> Movement of Earths lithosphere

Plate tectonics is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates which have been slowly moving since about 3.4 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s.

<span class="mw-page-title-main">Hadean</span> First eon of geological time, from 4.6 billion to 4 billion years ago

The Hadean is the first and oldest of the four known geologic eons of Earth's history. It started with the planet's formation about 4.54 Bya, now defined as Mya set by the age of the oldest solid material in the Solar System found in some meteorites about 4.567 billion years old. The proposed interplanetary collision that created the Moon occurred early in this eon, and the Late Heavy Bombardment is hypothesized to have occurred at the end of the eon. The Hadean ended 4 billion years ago, as defined by the International Commission on Stratigraphy (ICS), and was succeeded by the Archean eon.

<span class="mw-page-title-main">Seafloor spreading</span> Geological process at mid-ocean ridges

Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge.

<span class="mw-page-title-main">Lithosphere</span> Outermost shell of a terrestrial-type planet or natural satellite

A lithosphere is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the lithospheric mantle, the topmost portion of the upper mantle that behaves elastically on time scales of up to thousands of years or more. The crust and upper mantle are distinguished on the basis of chemistry and mineralogy.

<span class="mw-page-title-main">Subduction</span> A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year.

Isostasy or isostatic equilibrium is the state of gravitational equilibrium between Earth's crust and mantle such that the crust "floats" at an elevation that depends on its thickness and density. This concept is invoked to explain how different topographic heights can exist at Earth's surface. Although originally defined in terms of continental crust and mantle, it has subsequently been interpreted in terms of lithosphere and asthenosphere, particularly with respect to oceanic island volcanoes, such as the Hawaiian Islands.

<span class="mw-page-title-main">Island arc</span> Arc-shaped archipelago formed by intense seismic activity of long chains of active volcanoes

Island arcs are long chains of active volcanoes with intense seismic activity found along convergent tectonic plate boundaries. Most island arcs originate on oceanic crust and have resulted from the descent of the lithosphere into the mantle along the subduction zone. They are the principal way by which continental growth is achieved.

<span class="mw-page-title-main">Harry Hammond Hess</span> American geologist

Harry Hammond Hess was an American geologist and a United States Navy officer in World War II who is considered one of the "founding fathers" of the unifying theory of plate tectonics. He is best known for his theories on sea floor spreading, specifically work on relationships between island arcs, seafloor gravity anomalies, and serpentinized peridotite, suggesting that the convection of the Earth's mantle was the driving force behind this process.

<span class="mw-page-title-main">Continental crust</span> Layer of rock that forms the continents and continental shelves

Continental crust is the layer of igneous, metamorphic, and sedimentary rocks that forms the geological continents and the areas of shallow seabed close to their shores, known as continental shelves. This layer is sometimes called sial because its bulk composition is richer in aluminium silicates (Al-Si) and has a lower density compared to the oceanic crust, called sima which is richer in magnesium silicate (Mg-Si) minerals. Changes in seismic wave velocities have shown that at a certain depth, there is a reasonably sharp contrast between the more felsic upper continental crust and the lower continental crust, which is more mafic in character.

<span class="mw-page-title-main">Oceanic crust</span> Uppermost layer of the oceanic portion of a tectonic plate

Oceanic crust is the uppermost layer of the oceanic portion of the tectonic plates. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic cumulates. The crust overlies the rigid uppermost layer of the mantle. The crust and the rigid upper mantle layer together constitute oceanic lithosphere.

<span class="mw-page-title-main">Alfred Wegener</span> German climatologist and originator of the continental drift hypothesis (1880–1930)

Alfred Lothar Wegener was a German climatologist, geologist, geophysicist, meteorologist, and polar researcher.

<span class="mw-page-title-main">Mid-ocean ridge</span> Basaltic underwater mountain system formed by plate tectonic spreading

A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about 2,600 meters (8,500 ft) and rises about 2,000 meters (6,600 ft) above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a divergent plate boundary. The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin.

<span class="mw-page-title-main">Expanding Earth</span>

The expanding Earth or growing Earth hypothesis argues that the position and relative movement of continents is due at least partially to the volume of Earth increasing. Conversely, geophysical global cooling was the hypothesis that various features could be explained by Earth contracting.

<span class="mw-page-title-main">Pangaea</span> Supercontinent from the late Paleozoic to early Mesozoic eras

Pangaea or Pangea was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous approximately 335 million years ago, and began to break apart about 200 million years ago, at the end of the Triassic and beginning of the Jurassic. In contrast to the present Earth and its distribution of continental mass, Pangaea was centred on the equator and surrounded by the superocean Panthalassa and the Paleo-Tethys and subsequent Tethys Oceans. Pangaea is the most recent supercontinent to have existed and the first to be reconstructed by geologists.

Plate reconstruction is the process of reconstructing the positions of tectonic plates relative to each other or to other reference frames, such as the Earth's magnetic field or groups of hotspots, in the geological past. This helps determine the shape and make-up of ancient supercontinents and provides a basis for paleogeographic reconstructions.

The evolution of tectonophysics is closely linked to the history of the continental drift and plate tectonics hypotheses. The continental drift/ Airy-Heiskanen isostasy hypothesis had many flaws and scarce data. The fixist/ Pratt-Hayford isostasy, the contracting Earth and the expanding Earth concepts had many flaws as well.

<span class="mw-page-title-main">Warren B. Hamilton</span> American geologist

Warren B. Hamilton was an American geologist known for integrating observed geology and geophysics into planetary-scale syntheses describing the dynamic and petrologic evolution of Earth's crust and mantle. His primary career (1952–1995) was as a research scientist with the US Geological Survey (USGS) in geologic, then geophysical, branches. After retirement, he became a Distinguished Senior Scientist in the Department of Geophysics, Colorado School of Mines (CSM). He was a member of the National Academy of Sciences, and a holder of the Penrose Medal, highest honor of the Geological Society of America (GSA). Hamilton served in the US Navy from 1943 to 1946, completed a bachelor's degree at the University of California, Los Angeles (UCLA) in a Navy training program in 1945, and was a commissioned officer on the aircraft carrier USS Tarawa. After returning to civilian life, he earned an MSc in geology from the University of Southern California in 1949, and a PhD in geology from UCLA in 1951. He married Alicita V. Koenig (1926–2015) in 1947. Hamilton died in October 2018 at the age of 93; until the last few weeks he was working on new research. His final paper, "Toward a myth-free geodynamic history of Earth and its neighbors," was published posthumously (2019) in Earth-Science Reviews. In 2022 the Geological Society of America published an edited volume in his honor, with 33 papers: In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science. The first chapter of this book describes how Hamilton's last paper was written; the second applies Thomas Kuhn's model of scientific change to interpreting Hamilton's career.

The Plate Tectonics Revolution was the scientific and cultural change which developed from the acceptance of the plate tectonics theory. The event was a paradigm shift and scientific revolution.

Ridge push or sliding plate force is a proposed driving force for plate motion in plate tectonics that occurs at mid-ocean ridges as the result of the rigid lithosphere sliding down the hot, raised asthenosphere below mid-ocean ridges. Although it is called ridge push, the term is somewhat misleading; it is actually a body force that acts throughout an ocean plate, not just at the ridge, as a result of gravitational pull. The name comes from earlier models of plate tectonics in which ridge push was primarily ascribed to upwelling magma at mid-ocean ridges pushing or wedging the plates apart.



  1. England, Philip C.; Molnar, Peter; Richter, Frank M. (2007). "Kelvin, Perry and the Age of the Earth". American Scientist. 95 (4): 342–349. CiteSeerX . doi:10.1511/2007.66.3755.
  2. 1 2 3 4 5 6 Flügel, Helmut W. (December 1980). "Wegener-Ampferer-Schwinner: Ein Beitrag zur Geschichte der Geologie in Österreich" [Wegener-Ampferer-Schwinner: A Contribution to the History of the Geology in Austria](PDF). Mitt. österr. Geol. Ges. (in German). 73.
  3. Grapes 2012.
  4. Ortelius 1596.
  5. 1 2 Romm 1994.
  6. Bacon 1620.
  7. Keary & Vine 1990.
  8. 1 2 Schmeling, Harro (2004). "Geodynamik" (PDF) (in German). University of Frankfurt.
  9. Snider-Pellegrini 1858.
  10. Brusatte 2004, p. 3.
  11. Kious & Tilling 1996.
  12. "The History of Continental Drift – Before Wegener". Archived from the original on 2005-11-23.
  13. Boswell, James (1793). "On the Theory of the Earth – Letter to Abbé Jean-Louis Giraud Soulavie, 22 September 1782". The Scots Magazine . 55: 432–433.
  14. s:en:Franklin to Abbé Jean-Louis Giraud Soulavie
  15. Born, A. (1923). Isostasie und Schweremessung. Berlin.{{cite book}}: CS1 maint: location missing publisher (link)
  16. "Historical geology". Geopark Sadona.
  17. "Geo-Life: Von der Glarner Doppelfalte zur Glarner Ueberschiebung". geo-life.ch. Archived from the original on 2011-11-07.
  18. Wegener 1929, Wegener 1966
  19. Coxworthy 1924.
  20. Pickering 1907.
  21. Wegener 1929.
  22. "The Wrath of Science". NASA – Earth Observatory. 2001-02-08.
  23. "NYC Regional Geology: Mesozoic Basins". USGS.
  24. Benson W. N. (1951). "Patrick Marshall". Transactions and Proceedings of the Royal Society of New Zealand. 79: 152–155.
  25. 1 2 Longwell, Chester R. "Some Physical Tests of the Displacement Hypothesis" (PDF). We cannot disregard entirely the suggestion that continental masses have suffered some horizontal movement, because evidence for such movement is becoming ever more apparent in the structure of the Alps and of the Asiatic mountain systems.
  26. Krainer, Karl; Hauser, Christoph (2007). "Otto Ampferer (1875–1947): Pioneer in Geology, Mountain Climber, Collector and Draftsman" (PDF). Geo. Alp: Sonderband 1: 91–100.
  27. Gansser, Augusto (1973). "Orogene Entwicklung in den Anden, im Himalaja und den Alpen: ein Vergleich". Eclogae Geologicae Helvetiae. Lausanne. 66: 23–40.
  28. Honda, Hirochiki (1998). "Kiyoo Wadati and the path to the discovery of the intermediate-deep earthquake zone" (PDF). Episodes. 24 (2): 118–123. Archived from the original (PDF) on 24 March 2012. Retrieved 7 September 2012.
  29. Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Special Publications, Geological Society of London. 190 (1): 205–221. Bibcode:2001GSLSP.190..205D. doi:10.1144/GSL.SP.2001.190.01.14. S2CID   130092094.
  30. Eichenberger, Ursula (5 September 2008). "Augusto Gansser, Vermesser der Welt". Das Magazin.
  31. Scheidegger 1953.

Cited books

  • Bacon, Francis (1620). s:en:Novum Organum. England. Translated by Wood, Devey, Spedding, et al.{{cite book}}: CS1 maint: postscript (link)
  • P.M.S. Blackett, E.C. Bullard and S.K. Runcorn (ed). A Symposium on Continental Drift, held on 28 October 1965. pp. 323:
  • Carey, S. W. (1958). "The tectonic approach to continental drift". In Carey, S. W. (ed.). Continental Drift—A symposium, held in March 1956. Hobart: Univ. of Tasmania. pp. 177–363Expanding Earth from p. 311 to p. 349.{{cite book}}: CS1 maint: postscript (link)
  • Coats, Robert R. (1962). "Magma type and crustal structure in the Aleutian arc". The Crust of the Pacific Basin. American Geophysical Union Monograph. Vol. 6. pp. 92–109.
  • Cowen, R.; Lipps, J.H., eds. (1975). Controversies in the Earth sciences . St. Paul, MN: West Publishing Co. pp.  439. ISBN   978-0-8299-0044-6.
  • Dana, James Dwight (1863). Manual of Geology: Treating of the Principles of the Science with Special Reference to American Geological History. Bliss. p. 805.
  • Flint, R. F. (1947). Glacial Geology and the Pleistocene Epoch. New York: John Wiley and Sons. p. 589. ISBN   978-1-4437-2173-8.
  • Frankel, H. (1987). "The Continental Drift Debate". In H.T. Engelhardt Jr; A.L. Caplan (eds.). Scientific Controversies: Case Solutions in the resolution and closure of disputes in science and technology. Cambridge University Press. ISBN   978-0-521-27560-6.
  • W.A.J.M. van Waterschoot van der Gracht; Bailey Willis; Rollin T. Chamberlin; John Joly; G.A.F. Molengraaff; J.W. Gregory; Alfred Wegener; Charles Schuchert; Chester R. Longwell; Frank Bursley Taylor; William Bowie; David White; Joseph T. Singewald, Jr.; Edward W. Berry (1928). W.A.J.M. van Waterschoot van der Gracht (ed.). Theory of Continental Drift: a symposium on the origin and movement of land masses both intercontinental and intracontinental as proposed by Alfred Wegener, A Symposium of the American Association of Petroleum Geologists (AAPG, 1926). Tulsa, OK. p. 240.{{cite book}}: CS1 maint: location missing publisher (link)
  • Le Grand, H. E. (1990). "Is one picture worth a thousand experiments?". In Le Grand, H. E. (ed.). Experimental Inquiries: Historical, Philosophical and Social Studies of Experimentation in Science. Dordrecht: Kluwer. pp. 241–270.
  • Hallam, A. (1983). Great Geological Controversies. Oxford: Oxford University Press. pp. x+182. ISBN   978-0-19-854430-2.
  • Hellman, Hal (1998a). "Lord Kelvin versus Geologists and Biologists – The Age of the Earth". Great Feuds in Science: Ten of the Liveliest Disputes Ever. New York: John Wiley & Sons. pp.  105–120. ISBN   978-0-471-35066-8.
  • Hellman, Hal (1998b). "Wegener versus Everybody – Continental Drift". Great Feuds in Science: Ten of the Liveliest Disputes Ever. New York: John Wiley & Sons. pp.  141–158. ISBN   978-0-471-35066-8.
  • Hess, H. H. (November 1962). "History of Ocean Basins" (PDF). In A. E. J. Engel; Harold L. James; B. F. Leonard (eds.). Petrologic studies: a volume to honor of A. F. Buddington. Boulder, CO: Geological Society of America. pp. 599–620.
  • Holmes, Arthur (1944). Principles of Physical Geology (1 ed.). Edinburgh: Thomas Nelson & Sons. ISBN   978-0-17-448020-4.
  • Holmes, Arthur (1929b). The Origin of Continents and Oceans.
  • Hopkins, Evan (1844). On the connection of geology with terrestrial magnetism. R. Taylor. p. 129.
  • Jeffreys, H. (1924). The Earth – its Origin, History and Physical Constitution (1 ed.). Cambridge University Press. p. 429.
    • Jeffreys, H. (1952). The Earth – its Origin, History and Physical Constitution (3 ed.). Cambridge University Press. p. 574. ISBN   978-0-521-20648-8.
  • Kay, Marshall, ed. (1969). North Atlantic: geology and continental drift, a symposium. Tulsa, OK: American Association of Petroleum Geologists (AAPG).
  • Keary, P; Vine, F. J. (1990). Global Tectonics. Oxford: Blackwell Scientific Publications. p. 302.
  • Kious, W. Jacquelyne; Tilling, Robert I. (February 2001) [1996]. "Historical perspective". This Dynamic Earth: the Story of Plate Tectonics (Online ed.). U.S. Geological Survey. ISBN   978-0-16-048220-5 . Retrieved 2008-01-29. Abraham Ortelius in his work Thesaurus Geographicus... suggested that the Americas were 'torn away from Europe and Africa... by earthquakes and floods... The vestiges of the rupture reveal themselves, if someone brings forward a map of the world and considers carefully the coasts of the three [continents].'
  • Krill, Allan (2011). Fixists vs. Mobilists: In the Geology Contest of The Century, 1844–1969. ISBN   978-82-998389-1-7.
  • Lilienthal, T. (1756). Die Gute Sache der Göttlichen Offenbarung. Königsberg: Hartung. This is also likely owing to the fact that the coasts of certain lands, situated opposite each other though separated by sea, have a corresponding shape, so that they would be congruent with one another were they to stand side by side; for example, the southern part of America and Africa. For this reason one supposes that perhaps both of these continents were previously attached to each other, either directly, or through the sunken island of Atlantis;...
  • Lyell, Charles (1875). Principles of Geology (12 ed.).
  • Machamer, Peter; Pera, Marcella; Baltas, Aristides, eds. (2000). Scientific Controversies . New York et al.: Oxford University Press. pp.  278. ISBN   978-0-19-511987-9. Wegener pp. 72–75.{{cite book}}: CS1 maint: postscript (link)
  • Marvin, Ursula B. (1973). Continental Drift: The Evolution of a Concept. Smithsonian Institution Press. p. 239. ISBN   978-0-87474-129-2(Dissertation).{{cite book}}: CS1 maint: postscript (link)
  • McPhee, John (1998). Annals of the Former World . New York: Farrar, Straus & Giroux. ISBN   978-0-374-10520-4.
  • Oreskes, Naomi (1999). The rejection of continental drift: theory and method in American earth science. Oxford University Press. ISBN   978-0-19-511733-2.
  • Naomi Oreskes; Homer Le Grand, eds. (December 2001). Plate Tectonics: An Insider's History of the Modern Theory of the Earth. Westview Press. p. 448. ISBN   978-0-8133-3981-8.
  • Ortelius, Abraham (1596). Thesaurus Geographicus (3 ed.). Antwerp: Plantin. The vestiges of the rupture reveal themselves, if someone brings forward a map of the world and considers carefully the coasts of the three [continents (Europe, Africa and Americas)]
  • Pepper, John Henry (1861). The Playbook of Metals. Routledge, Warne, and Routledge. pp.  502.
  • Phinney, R . A. (1968). The History of the Earth's Crust. Princeton, NJ: Princeton Univ. Press. p. 244.
  • Revelle, R. R. (1944). Marine bottom samples collected in the Pacific Ocean by the Carnegie on its Seventh Cruise. Pub. 556, Part 1. Washington: Carnegie Inst.
  • Runcorn, S. K., ed. (1962b). Continental Drift. New York and London: Academic Press. p. 338.
  • Snider-Pellegrini, Antonio (1858). La Création et ses mystères dévoilés. Paris: Frank and Dentu.
  • Stampfli, G.M.; Borel, G.D. (2004). "The TRANSMED Transects in Space and Time: Constraints on the Paleotectonic Evolution of the Mediterranean Domain". In Cavazza W.; Roure F.; Spakman W.; Stampfli G.M.; Ziegler P (eds.). The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle. Springer Verlag. ISBN   978-3-540-22181-4.
  • Suess, E. (1875). Die Entstehung der Alpen[The Origin of the Alps]. W. Braumüller. A mass movement, more or less horizontal and progressive, should be the cause underlying the formation of our mountain systems.
  • Suess, Eduard (1885-08-19). Das Antlitz der Erde[The Face of the Earth]. Translated by H. B. C. Sollas. Vienna: F. Tempsky. Three volumes.{{cite book}}: CS1 maint: postscript (link)
  • Sullivan, Walter (1991). Continents in Motion: The New Earth Debate (1 ed.). American Inst. of Physics. p. 425. ISBN   978-0-88318-703-6.
  • du Toit, Alexander (1937). Our wandering continents: an hypothesis of continental drifting. Edinburgh: Oliver and Boyd. ISBN   978-0-8371-5982-9.
  • Umbgrove, J.H.F. (1947). The Pulse of the Earth (2 ed.). The Hague, NL: Martinus Nyhoff. p. 359.
  • Vening Meinesz, F.A. (1948). Gravity expeditions at sea 1923–1938. Vol. IV. Complete results with isostatic reduction, interpretation on the results. Delft: Nederlandse Commissie voor Geodesie 9. p. 233. ISBN   978-90-6132-015-9. Archived from the original on 2011-07-22.
  • Wallace, Alfred Russel (2007). Darwinism: An Exposition of the Theory of Natural Selection With Some of Its Applications. Cosimo, Inc. p. 516. ISBN   978-1-60206-453-9.
  • Wegener, A. (1929). Die Entstehung der Kontinente und Ozeane (in German) (4th ed.). Braunschweig: Friedrich Vieweg & Sohn Akt. Ges. ISBN   978-3-443-01056-0.
    • Wegener, A. (1966) [1929]. The Origin of Continents and Oceans. Courier Dover Publications. ISBN   978-0-486-61708-4.
  • Windley, B.F. (1996). The Evolving Continents (3 ed.). John Wiley & Sons. ISBN   978-0-471-91739-7.
  • Ziegler, P.A. (1990). Geological Atlas of Western and Central Europe (2 ed.). Bath: Shell Internationale Petroleum Maatschappij BV, Geological Society Publishing House. p. 239. ISBN   978-90-6644-125-5.

Cited articles