Paratethys

Last updated
Palaeogeographical reorganization of the Tethys-Paratethys region during the Paleogene, from a connected Tethys configuration during the early Eocene (above) to a fragmented and restricted Paratethys region configuration during the Oligocene (below). Note the loss of deep-water connections between the Indian Ocean region and the Mediterranean, the complete loss of Indian-Arctic Ocean connections, and the closure of most of the Eocene seaways in the Oligocene time. Dire Straits FIG 01.jpg
Palaeogeographical reorganization of the Tethys–Paratethys region during the Paleogene, from a connected Tethys configuration during the early Eocene (above) to a fragmented and restricted Paratethys region configuration during the Oligocene (below). Note the loss of deep-water connections between the Indian Ocean region and the Mediterranean, the complete loss of Indian–Arctic Ocean connections, and the closure of most of the Eocene seaways in the Oligocene time.
Megafaunal diversity of the Paratethys megalake included cetaceans and pinnipeds most notably the Cetotherium riabinini went thorough potential insular dwarfism. Paratethys Megalake Infographic 23X 2 EN.jpg
Megafaunal diversity of the Paratethys megalake included cetaceans and pinnipeds most notably the Cetotherium riabinini went thorough potential insular dwarfism.

The Paratethys sea, Paratethys ocean, Paratethys realm or just Paratethys was a large shallow inland sea that stretched from the region north of the Alps over Central Europe to the Aral Sea in Central Asia.

Contents

Paratethys was peculiar due to its paleogeography: it consisted of a series of deep basins, formed during the Oxfordian stage of the Late Jurassic as an extension of the rift that formed the Central Atlantic Ocean. These basins were connected with each other and the global ocean by narrow and shallow seaways that often limited water exchange and caused widespread long-term anoxia. [1]

Paratethys was at times reconnected with the Tethys or its successors (the Mediterranean Sea or the Indian Ocean) during the Oligocene and the early and middle Miocene times, but at the onset of the late Miocene epoch, the tectonically trapped sea turned into a megalake from the eastern Alps to what is now Kazakhstan. [2] From the Pliocene epoch onward (after 5 million years ago), Paratethys became progressively shallower. Today's Black Sea, Caspian Sea, Aral Sea, Lake Urmia, Namak Lake and others are remnants of the Paratethys Sea.

Paratethys formed about 34 Mya (million years ago) at the beginning of the Oligocene epoch, [3] when the northern region of the Tethys Ocean (Peri-Tethys) was separated from the Mediterranean region of the Tethys realm due to the formation of the Alps, Carpathians, Dinarides, Taurus and Elburz mountains. During the Jurassic and Cretaceous periods, this part of Eurasia was covered by shallow seas that formed the northern margins of the Tethys Ocean. However, because Anatolia, the southern boundary of the Paleo-Tethys Ocean, is a part of the original continent of Cimmeria, the last remnant of the Paleo-Tethys might be oceanic crust under the Black Sea. The Tethys Ocean formed between Laurasia (Eurasia and North America) and Gondwana (Africa, India, Antarctica, Australia and South America) when the supercontinent Pangaea broke up during the Triassic (200 million years ago).

Name and research

The name Paratethys was first used by Vladimir Laskarev in 1924. [4] Laskarev's definition included only fossils and sedimentary strata from the sea of the Neogene system. This definition was later adjusted also to include the Oligocene series. The existence of a separate water body in these periods was deduced from the fossil fauna, including mollusks, fish and ostracods. In periods in which the Paratethys or parts of it were separated from each other or from other oceans, a separate fauna developed which is found in sedimentary deposits. In this way, the paleogeographical development of the Paratethys can be studied. Laskerev's description of the Paratethys was anticipated much earlier by Sir Roderick Murchison in chapter 13 of his 1845 book. [5]

One of the key characteristics of the Paratethys realm, that is differentiating it from the Tethys Ocean, is the widespread development of endemic fauna, adapted to fresh and brackish waters like those that still exist in recent waters of the Caspian Sea. This distinctive fauna in which univalves of freshwater origin such as Limnex and Neritinex are associated with forms of Cardiacae and Mytili, common to partially saline or brackish waters, makes the geologic records from Paratethys particularly difficult to correlate with those from other oceans or seas because their faunas evolved separately at times. Stratigraphers of the Paratethys, therefore, have their own sets of stratigraphic stages which are still used as alternatives for the official geologic timescale of the ICS.

Palaeogeographic evolution

The Paratethys spread over a large area in Central Europe and western Asia. In the west it included in some stages the Molasse basin north of the Alps; the Vienna Basin, the Outer Carpathian Basin, the Pannonian Basin, and further east to the basin of the current Black Sea and the Caspian Sea until the current position of the Aral Sea.

Anoxic Giant

The boundary between the Eocene and Oligocene epochs was characterized by a big drop of the global (eustatic) sea level and sudden steep cooling of global climates. At the same time the Alpine orogeny, a tectonic phase by which the Alps, Carpathians, Dinarides, Taurus, Elburz and many other mountain chains along the southern rim of Eurasia were formed. The combination of a drop in sea level and tectonic uplift resulted in the partial disconnection of the Tethys and Paratethys domains. Due to poor connectivity with the global ocean, the Paratethys realm became stratified and turned into a giant anoxic sea.

The western and central Paratethys basins experienced intense tectonic activity and anoxia during the Oligocene and early Miocene and became filled with sediments. Local gypsum and salt evaporitic basins formed in the East Carpathian region during the early Miocene. The Eastern Paratethys basin, holding most of the water of Paratethys, remained anoxic for almost 20 million years (35–15 Mya), and during this time Paratethys acted as an enormous carbon sink [1] trapping organic matter in its sediments. The Paratethys anoxia was "shut down" [6] during the middle Miocene, some 15 million years ago, when a widespread marine transgression, known as the Badenian Flooding, improved connections with the global ocean and triggered the ventilation of the deep waters of Paratethys. [7]

Short-lived open seas

After the Badenian Flooding, in the middle Miocene, Paratethys was characterized by open-marine environments. Brackish and lacustrine basins turned into ventilated seas. Rich marine fauna containing sharks (e.g., megalodon), corals, marine mammals, foraminifera and nanoplankton spread throughout Paratethys from the neighbouring Mediterranean region, probably via the Trans-Tethyan Corridor, an ancient sea-strait located in modern Slovenia. [8]

Salt Giants

The open marine environments of Paratethys were short-lived, and halfway through the middle Miocene, progressive uplift of the central European mountain ranges and a eustatic drop isolated Paratethys from the global ocean triggering a salinity crisis in Central Paratethys. The "Badenian Salinity Crisis" [9] spanned between 13.8 and 13.4 Mya. [10] Thick evaporitic beds (salt and gypsum) formed in the Outer Carpathians, Transylvanian and Pannonian basins. Salt mines extract this middle-Miocene salt in Transylvania: Turda, Ocna Mures, Ocna Sibiului and Praid; in the Eastern and Carpathians: Wieliczka, Bochnia, Cacica and Slanic Prahova; and Ocnele Mari in the Southern Carpathians, but evaporites are also present in areas west of the Carpathians: Maramureș, eastern Slovakia (Solivar mine near Prešov) and, to a lesser extent, in the Pannonian depression in central Hungary.

Megalake

Some 12 million years ago, slightly before the onset of the late Miocene, the ancient sea transformed into a megalake that covered more than 2.8 million square kilometers, from the eastern Alps to what is now Kazakhstan, and characterized by salinities generally ranging between 12 and 14%. During its five-million-year lifetime, the megalake was home to many species found nowhere else, including molluscs and ostracods as well as miniature versions of whales, dolphins and seals. [2] [11] In 2023, Guinness World Records named this lake the largest in earth's history. [12] Near the end of the Miocene, an event known as the Khersonian crisis, marked by rapidly fluctuating environmental factors and sea levels, wiped out much of the unique fish fauna of this megalake. [13]

After Paratethys

When parts of the Mediterranean fell dry during the Messinian salinity crisis (about 6 million years ago) there were phases when Paratethys water flowed into the deep Mediterranean basins. During the Pliocene epoch (5.33 to 2.58 million years ago) the former Paratethys was divided into a couple of inland seas that were at times completely separated from each other. An example was the Pannonian Sea, a brackish sea in the Pannonian Basin. Many of these would disappear before the start of the Pleistocene. At present, only the Black Sea, Caspian Sea and the Aral Sea remain of what was once a vast inland sea.

See also

Related Research Articles

<span class="mw-page-title-main">Cenozoic</span> Third era of the Phanerozoic Eon (66 million years ago to present)

The Cenozoic is Earth's current geological era, representing the last 66 million years of Earth's history. It is characterised by the dominance of mammals, birds, and angiosperms. It is the latest of three geological eras, preceded by the Mesozoic and Paleozoic. The Cenozoic started with the Cretaceous–Paleogene extinction event, when many species, including the non-avian dinosaurs, became extinct in an event attributed by most experts to the impact of a large asteroid or other celestial body, the Chicxulub impactor.

The Miocene is the first geological epoch of the Neogene Period and extends from about 23.03 to 5.333 million years ago (Ma). The Miocene was named by Scottish geologist Charles Lyell; the name comes from the Greek words μείων and καινός and means "less recent" because it has 18% fewer modern marine invertebrates than the Pliocene has. The Miocene is preceded by the Oligocene and is followed by the Pliocene.

The Oligocene is a geologic epoch of the Paleogene Period and extends from about 33.9 million to 23 million years before the present. As with other older geologic periods, the rock beds that define the epoch are well identified but the exact dates of the start and end of the epoch are slightly uncertain. The name Oligocene was coined in 1854 by the German paleontologist Heinrich Ernst Beyrich from his studies of marine beds in Belgium and Germany. The name comes from the Ancient Greek ὀλίγος and καινός, and refers to the sparsity of extant forms of molluscs. The Oligocene is preceded by the Eocene Epoch and is followed by the Miocene Epoch. The Oligocene is the third and final epoch of the Paleogene Period.

<span class="mw-page-title-main">Geology of the Alps</span> The formation and structure of the European Alps

The Alps form part of a Cenozoic orogenic belt of mountain chains, called the Alpide belt, that stretches through southern Europe and Asia from the Atlantic all the way to the Himalayas. This belt of mountain chains was formed during the Alpine orogeny. A gap in these mountain chains in central Europe separates the Alps from the Carpathians to the east. Orogeny took place continuously and tectonic subsidence has produced the gaps in between.

<span class="mw-page-title-main">Tethys Ocean</span> Prehistoric ocean between Gondwana and Laurasia

The Tethys OceanTEETH-iss, TETH-, also called the Tethys Sea or the Neo-Tethys, was a prehistoric ocean during much of the Mesozoic Era and early Cenozoic Era, located between the ancient continents of Gondwana and Laurasia, before the opening of the Indian and Atlantic oceans during the Cretaceous Period.

<span class="mw-page-title-main">Pannonian Sea</span> Shallow ancient sea where the Pannonian Basin in Central Europe is today

The Pannonian Sea was a shallow ancient lake, where the Pannonian Basin in Central Europe is now. The Pannonian Sea existed from about 10 Ma until 1 Ma, during the Miocene and Pliocene epochs, when marine sediments were deposited to a depth of 3–4 km (1.9–2.5 mi) in the Pannonian Basin.

<span class="mw-page-title-main">Messinian salinity crisis</span> Drying-up of the Mediterranean Sea from 5.96 to 5.33 million years ago

The Messinian salinity crisis was a geological event during which the Mediterranean Sea went into a cycle of partial or nearly complete desiccation (drying-up) throughout the latter part of the Messinian age of the Miocene epoch, from 5.96 to 5.33 Ma. It ended with the Zanclean flood, when the Atlantic reclaimed the basin.

<span class="mw-page-title-main">Mediterranean Basin</span> Region of lands around the Mediterranean Sea that have a Mediterranean climate

In biogeography, the Mediterranean Basin, also known as the Mediterranean Region or sometimes Mediterranea, is the region of lands around the Mediterranean Sea that have mostly a Mediterranean climate, with mild to cool, rainy winters and warm to hot, dry summers, which supports characteristic Mediterranean forests, woodlands, and scrub vegetation. It was a very important part of Mediterranean civilizations.

<span class="mw-page-title-main">Geology of Europe</span>

The geology of Europe is varied and complex, and gives rise to the wide variety of landscapes found across the continent, from the Scottish Highlands to the rolling plains of Hungary. Europe's most significant feature is the dichotomy between highland and mountainous Southern Europe and a vast, partially underwater, northern plain ranging from England in the west to the Ural Mountains in the east. These two halves are separated by the Pyrenees and the Alps-Carpathians mountain chain. The northern plains are delimited in the west by the Scandinavian Mountains and the mountainous parts of the British Isles. The southern mountainous region is bounded by the Mediterranean Sea and the Black Sea. Major shallow water bodies submerging parts of the northern plains are the Celtic Sea, the North Sea, the Baltic Sea and the Barents Sea.

<span class="mw-page-title-main">Molasse basin</span> Foreland basin north of the Alps

The Molasse basin is a foreland basin north of the Alps which formed during the Oligocene and Miocene epochs. The basin formed as a result of the flexure of the European plate under the weight of the orogenic wedge of the Alps that was forming to the south.

<span class="mw-page-title-main">Cimmeria (continent)</span> Ancient string of microcontinents that rifted from Gondwana

Cimmeria was an ancient continent, or, rather, a string of microcontinents or terranes, that rifted from Gondwana in the Southern Hemisphere and was accreted to Eurasia in the Northern Hemisphere. It consisted of parts of present-day Turkey, Iran, Afghanistan, Pakistan, Tibet, China, Myanmar, Thailand, and Malaysia. Cimmeria rifted from the Gondwanan shores of the Paleo-Tethys Ocean during the Early Permian and as the Neo-Tethys Ocean opened behind it, during the Permian, the Paleo-Tethys closed in front of it. Because the different chunks of Cimmeria drifted northward at different rates, a Meso-Tethys Ocean formed between the different fragments during the Cisuralian. Cimmeria rifted off Gondwana from east to west, from Australia to the eastern Mediterranean. It stretched across several latitudes and spanned a wide range of climatic zones.

<span class="mw-page-title-main">Geological history of Earth</span> The sequence of major geological events in Earths past

The geological history of the Earth follows the major geological events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.

<span class="mw-page-title-main">Orleanian</span> Geologic time period

The Orleanian age is a period of geologic time, within the Miocene and used more specifically with European Land Mammal Ages. It precedes the Astaracian age and follows the Agenian age.

<span class="mw-page-title-main">Iberian Plate</span> Small tectonic plate now part of the Eurasian plate

The Iberian Plate is a microplate typically grouped with the Eurasian Plate that includes the microcontinent Iberia, Corsica, Sardinia, the Balearic Islands, the Briançonnais zone of the Penninic nappes of the Alps, and the portion of Morocco north of the High Atlas Mountains. The Iberian plate is a part of the Eurasian plate.

<span class="mw-page-title-main">Carpathian Flysch Belt</span> Tectonic zone in the Carpathian Mountains

The Carpathian Flysch Belt is an arcuate tectonic zone included in the megastructural elevation of the Carpathians on the external periphery of the mountain chain. Geomorphologically it is a portion of the Outer Carpathians. Geologically it is a thin-skinned thrust belt or accretionary wedge, formed by rootless nappes consisting of so-called flysch – alternating marine deposits of claystones, shales and sandstones which were detached from their substratum and moved tens of kilometers to the north (generally). The Flysch Belt is together with Neogene volcanic complexes the only extant tectonic zone along the whole Carpathian arc.

<span class="mw-page-title-main">Geology of Bosnia and Herzegovina</span>

The geology of Bosnia & Herzegovina is the study of rocks, minerals, water, landforms and geologic history in the country. The oldest rocks exposed at or near the surface date to the Paleozoic and the Precambrian geologic history of the region remains poorly understood. Complex assemblages of flysch, ophiolite, mélange and igneous plutons together with thick sedimentary units are a defining characteristic of the Dinaric Alps, also known as the Dinaride Mountains, which dominate much of the country's landscape.

The geology of Austria consists of Precambrian rocks and minerals together with younger marine sedimentary rocks uplifted by the Alpine orogeny.

<span class="mw-page-title-main">Geology of Slovakia</span> Overview of the geology of Slovakia

The geology of Slovakia is structurally complex, with a highly varied array of mountain ranges and belts largely formed during the Paleozoic, Mesozoic and Cenozoic eras.

<span class="mw-page-title-main">Geology of Croatia</span> Overview of the geology of Croatia

The geology of Croatia has some Precambrian rocks mostly covered by younger sedimentary rocks and deformed or superimposed by tectonic activity.

The Gomphotherium land bridge was a land bridge that connected Eurasia to Afro-Arabia between approximately 19 Mya and 15 Mya.

References

  1. 1 2 3 Palcu, D.V.; Krijgsman, W. (2023). "The dire straits of Paratethys: gateways to the anoxic giant of Eurasia". Geological Society, London, Special Publications. 523 (1): 111–139. Bibcode:2023GSLSP.523...73P. doi: 10.1144/SP523-2021-73 . S2CID   245054442.
  2. 1 2 Perkins, Sid (June 4, 2021). "The rise and fall of the world's largest lake". sciencemag.org. Retrieved 6 June 2021.
  3. Stampfli, Gérard. "155 Ma - Late Oxfordian (an. M25)" (PDF). University of Lausanne. Archived from the original (PDF) on 2012-01-13.
  4. Laskarev, V. (1924). "Sur les equivalents du Sarmatien superieur en Serbie". In Vujević, P. (ed.). Recueil de Travaux Offert à M. Jovan Cvijic par ses Amis et Collaborateurs. Beograd: Drzhavna Shtamparija. pp. 73–85. OCLC   760139740.
  5. Murchison, Roderick Impey; de Verneuil, P.E.; von Keyserling, A. (1845). On the Geology of Russia in Europe and the Ural Mountains. Vol. 1. London: John Murray. pp. 297–323.
  6. Palcu, D.V.; Popov, S.V.; Golovina, L.; Kuiper, K.F.; Liu, S.; Krijgsman, W. (March 2019). "The shutdown of an anoxic giant: Magnetostratigraphic dating of the end of the Maikop Sea". Gondwana Research. 67: 82–100. Bibcode:2019GondR..67...82P. doi:10.1016/j.gr.2018.09.011. hdl: 1871.1/9f40acfe-86d3-44da-bf25-832c79f4c22f . S2CID   134737570.
  7. Sant, K.; Palcu, D.V.; Mandic, O.; Krijgsman, W. (2017). "Changing seas in the Early–Middle Miocene of Central Europe: a Mediterranean approach to Paratethyan stratigraphy". Terra Nova. 29 (5): 273–281. Bibcode:2017TeNov..29..273S. doi:10.1111/ter.12273. S2CID   134172069.
  8. Bartol, M.; Mikuž, V.; Horvat, A. (15 January 2014). "Palaeontological evidence of communication between the Central Paratethys and the Mediterranean in the late Badenian/early Serravalian". Palaeogeography, Palaeoclimatology, Palaeoecology. 394: 144–157. Bibcode:2014PPP...394..144B. doi:10.1016/j.palaeo.2013.12.009.
  9. Rögl, F. "Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene)". Annalen des Naturhistorischen Museums in Wien. 99: 279–310.
  10. De Leeuw, A.; Bukowski, K.; Krijgsman, W.; Kuiper, K.F. (August 1, 2010). "Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region". Geology. 38 (8): 715–718. Bibcode:2010Geo....38..715D. doi:10.1130/G30982.1.
  11. Palcu, Dan Valentin; Patina, Irina Stanislavovna; Șandric, Ionuț; Lazarev, Sergei; Vasiliev, Iuliana; Stoica, Marius; Krijgsman, Wout (2021). "Late Miocene megalake regressions in Eurasia" (PDF). Scientific Reports. 11 (1): 11471. Bibcode:2021NatSR..1111471P. doi:10.1038/s41598-021-91001-z. PMC   8169904 . PMID   34075146 . Retrieved 6 June 2021.
  12. Meulebrouck, Stephan van. "Paratethys: The largest lake the Earth has ever seen". phys.org. Retrieved 2023-12-27.
  13. Braig, Florian; Haug, Carolin; Haug, Joachim T. (2023-12-22). "Diversification events of the shield morphology in shore crabs and their relatives through development and time". Palaeontologia Electronica. 26 (3): 1–23. doi: 10.26879/1305 . ISSN   1094-8074.

Further reading