Toroidal moment

Last updated

In electromagnetism, a toroidal moment is an independent term in the multipole expansion of electromagnetic fields besides magnetic and electric multipoles. In the electrostatic multipole expansion, all charge and current distributions can be expanded into a complete set of electric and magnetic multipole coefficients. However, additional terms arise in an electrodynamic multipole expansion. The coefficients of these terms are given by the toroidal multipole moments as well as time derivatives of the electric and magnetic multipole moments. While electric dipoles can be understood as separated charges and magnetic dipoles as circular currents, axial (or electric) toroidal dipoles describes toroidal (donut-shaped) charge arrangements whereas polar (or magnetic) toroidal dipole (also called anapole) correspond to the field of a solenoid bent into a torus.

Contents

Classical toroidal dipole moment

A complex expression allows the current density J to be written as a sum of electric, magnetic, and toroidal moments using Cartesian [1] or spherical [2] differential operators. The lowest order toroidal term is the toroidal dipole. Its magnitude along direction i is given by

Since this term arises only in an expansion of the current density to second order, it generally vanishes in a long-wavelength approximation.

However, a recent study comes to the result that the toroidal multipole moments are not a separate multipole family, but rather higher order terms of the electric multipole moments. [3]

Quantum toroidal dipole moment

In 1957, Yakov Zel'dovich found that because the weak interaction violates parity symmetry, a spin-1/2 Dirac particle must have a toroidal dipole moment, also known as an anapole moment, in addition to the usual electric and magnetic dipoles. [4] The interaction of this term is most easily understood in the non-relativistic limit, where the Hamiltonian is

where d, μ, and a are the electric, magnetic, and anapole moments, respectively, and σ is the vector of Pauli matrices. [5]

The nuclear toroidal moment of cesium was measured in 1997 by Wood et al.. [6]

Solenoid currents j (blue) inducing a toroidal magnetic moment (red). Solenoid currents inducing a toroidal magnetic moment.tif
Solenoid currents j (blue) inducing a toroidal magnetic moment (red).

Symmetry properties of dipole moments

All dipole moments are vectors which can be distinguished by their differing symmetries under spatial inversion (P : r ↦ −r) and time reversal (T : t ↦ −t). Either the dipole moment stays invariant under the symmetry transformation ("+1") or it changes its direction ("−1"):

Dipole momentPT
axial toroidal dipole moment+1+1
electric dipole moment −1+1
magnetic dipole moment +1−1
polar toroidal dipole moment−1−1

Magnetic toroidal moments in condensed matter physics

In condensed matter magnetic toroidal order can be induced by different mechanisms: [7]

Magnetic toroidal moment and its relation to the magnetoelectric effect

The presence of a magnetic toroidic dipole moment T in condensed matter is due to the presence of a magnetoelectric effect: Application of a magnetic field H in the plane of a toroidal solenoid leads via the Lorentz force to an accumulation of current loops and thus to an electric polarization perpendicular to both T and H. The resulting polarization has the form Pi = εijkTjHk (with ε being the Levi-Civita symbol). The resulting magnetoelectric tensor describing the cross-correlated response is thus antisymmetric.

Ferrotoroidicity in condensed matter physics

A phase transition to spontaneous long-range order of microscopic magnetic toroidal moments has been termed ferrotoroidicity. [12] It is expected to fill the symmetry schemes of primary ferroics (phase transitions with spontaneous point symmetry breaking) with a space-odd, time-odd macroscopic order parameter. A ferrotoroidic material would exhibit domains which could be switched by an appropriate field, e.g. a magnetic field curl. Both of these hallmark properties of a ferroic state have been demonstrated in an artificial ferrotoroidic model system based on a nanomagnetic array [13]

The existence of ferrotoroidicity is still under debate and clear-cut evidence has not been presented yet—mostly due to the difficulty to distinguish ferrotoroidicity from antiferromagnetic order, as both have no net magnetization and the order parameter symmetry is the same.[ citation needed ]

Anapole dark matter

All CPT self-conjugate particles, in particular the Majorana fermion, are forbidden from having any multipole moments other than toroidal moments. [14] At tree level (i.e. without allowing loops in Feynman diagrams) an anapole-only particle interacts only with external currents, not with free-space electromagnetic fields, and the interaction cross-section diminishes as the particle velocity slows. For this reason, heavy Majorana fermions have been suggested as plausible candidates for cold dark matter. [15] [16]

See also

Related Research Articles

<span class="mw-page-title-main">Dipole</span> Electromagnetic phenomenon

In physics, a dipole is an electromagnetic phenomenon which occurs in two ways:

<span class="mw-page-title-main">Zero-point energy</span> Lowest possible energy of a quantum system or field

Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. Therefore, even at absolute zero, atoms and molecules retain some vibrational motion. Apart from atoms and molecules, the empty space of the vacuum also has these properties. According to quantum field theory, the universe can be thought of not as isolated particles but continuous fluctuating fields: matter fields, whose quanta are fermions, and force fields, whose quanta are bosons. All these fields have zero-point energy. These fluctuating zero-point fields lead to a kind of reintroduction of an aether in physics since some systems can detect the existence of this energy. However, this aether cannot be thought of as a physical medium if it is to be Lorentz invariant such that there is no contradiction with Einstein's theory of special relativity.

<span class="mw-page-title-main">Magnetic dipole</span> Magnetic analogue of the electric dipole

In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant.

<span class="mw-page-title-main">Magnetic monopole</span> Hypothetical particle with one magnetic pole

In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole. A magnetic monopole would have a net north or south "magnetic charge". Modern interest in the concept stems from particle theories, notably the grand unified and superstring theories, which predict their existence. The known elementary particles that have electric charge are electric monopoles.

<span class="mw-page-title-main">Hyperfine structure</span> Small shifts and splittings in the energy levels of atoms, molecules and ions

In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.

A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system for three-dimensional Euclidean space, . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on , or less often on for some other .

A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure reflecting various orders of complexity.

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847647043(28)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.

In quantum physics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two relativistic effects: the apparent magnetic field seen from the electron perspective and the magnetic moment of the electron associated with its intrinsic spin. A similar effect, due to the relationship between angular momentum and the strong nuclear force, occurs for protons and neutrons moving inside the nucleus, leading to a shift in their energy levels in the nucleus shell model. In the field of spintronics, spin–orbit effects for electrons in semiconductors and other materials are explored for technological applications. The spin–orbit interaction is at the origin of magnetocrystalline anisotropy and the spin Hall effect.

<span class="mw-page-title-main">Magnetization</span> Physical quantity, density of magnetic moment per volume

In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. It is represented by a pseudovector M. Magnetization can be compared to electric polarization, which is the measure of the corresponding response of a material to an electric field in electrostatics.

Multiferroics are defined as materials that exhibit more than one of the primary ferroic properties in the same phase:

The electron electric dipole momentde is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field:

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.

The neutron electric dipole moment (nEDM), denoted dn, is a measure for the distribution of positive and negative charge inside the neutron. A nonzero electric dipole moment can only exist if the centers of the negative and positive charge distribution inside the particle do not coincide. So far, no neutron EDM has been found. The current best measured limit for dn is (0.0±1.1)×10−26 e⋅cm.

In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.

<span class="mw-page-title-main">Electric dipole moment</span> Measure of positive and negative charges

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.

The Rashba effect, also called Bychkov–Rashba effect, is a momentum-dependent splitting of spin bands in bulk crystals and low-dimensional condensed matter systems similar to the splitting of particles and anti-particles in the Dirac Hamiltonian. The splitting is a combined effect of spin–orbit interaction and asymmetry of the crystal potential, in particular in the direction perpendicular to the two-dimensional plane. This effect is named in honour of Emmanuel Rashba, who discovered it with Valentin I. Sheka in 1959 for three-dimensional systems and afterward with Yurii A. Bychkov in 1984 for two-dimensional systems.

Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba.

<span class="mw-page-title-main">Dynamic toroidal dipole</span>

In classical electrodynamics, the dynamic toroidal dipole arises from time-dependent currents flowing along the poloidal direction on the surface of a torus. In relativistic quantum mechanics, spin contributions to the toroidal dipole needs to be taken into account. Toroidal dipole moments are odd under parity and time-reversal symmetries. Dynamic toroidal dipole is distinguished from the static toroidal dipole introduced by Zeldovich in 1957 under the name of static anapole.

References

  1. Radescu, E. Jr.; Vaman, G. (2012), "Cartesian multipole expansions and tensorial identities", Progress in Electromagnetics Research B, 36: 89–111, doi: 10.2528/PIERB11090702
  2. Dubovik, V. M.; Tugushev, V. V. (March 1990), "Toroid moments in electrodynamics and solid-state physics", Physics Reports, 187 (4): 145–202, Bibcode:1990PhR...187..145D, doi:10.1016/0370-1573(90)90042-Z
  3. I. Fernandez-Corbaton et al.: On the dynamic toroidal multipoles from localized electric current distributions . Scientific Reports, 8 August 2017
  4. Zel’Dovich, I. B. (1958). Electromagnetic interaction with parity violation. Sov. Phys. JETP, 6(6), 1184-1186.
  5. Dubovik, V. M.; Kuznetsov, V. E. (1998), "The toroid moment of Majorana neutrino", Int. J. Mod. Phys. A, 13 (30): 5257–5278, arXiv: hep-ph/9606258 , Bibcode:1998IJMPA..13.5257D, doi:10.1142/S0217751X98002419, S2CID   14925303
  6. Wood, C. S. (1997), "Measurement of parity nonconservation and an anapole moment in cesium", Science , 275 (5307): 1759–1763, doi:10.1126/science.275.5307.1759, PMID   9065393, S2CID   16320428 .
  7. Spaldin, Nicola A.; Fiebig, Manfred; Mostovoy, Maxim (2008), "The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect" (PDF), Journal of Physics: Condensed Matter, 20 (43): 434203, Bibcode:2008JPCM...20Q4203S, doi:10.1088/0953-8984/20/43/434203, S2CID   53455483 .
  8. Ederer, Claude; Spaldin, Nicola A. (2007), "Towards a microscopic theory of toroidal moments in bulk periodic crystals", Physical Review B, 76 (21): 214404, arXiv: 0706.1974 , Bibcode:2007PhRvB..76u4404E, doi:10.1103/physrevb.76.214404, S2CID   55003368 .
  9. Scagnoli, V.; Staub, U.; Bodenthin, Y.; de Souza, R. A.; Garcia-Fernandez, M.; Garganourakis, M.; Boothroyd, A. T.; Prabhakaran, D.; Lovesey, S. W. (2011), "Observation of orbital currents in CuO", Science , 332 (6030): 696–698, Bibcode:2011Sci...332..696S, doi:10.1126/science.1201061, PMID   21474711, S2CID   206531474 .
  10. Varma, C. M. (2006), "Theory of the pseudogap state of the cuprates", Physical Review B, 73 (15): 155113, arXiv: cond-mat/0507214 , Bibcode:2006PhRvB..73o5113V, doi:10.1103/physrevb.73.155113, S2CID   119370367 .
  11. Fauqué, B.; Sidis, Y.; Hinkov, V.; Pailhès, S.; Lin, C. T.; Chaud, X.; Bourges, P. (2006), "Magnetic order in the pseudogap phase of high-TC superconductors", Phys. Rev. Lett., 96 (19): 197001, arXiv: cond-mat/0509210 , Bibcode:2006PhRvL..96s7001F, doi:10.1103/physrevlett.96.197001, PMID   16803131, S2CID   17857703 .
  12. Gnewuch, Stephanie; Rodriguez, Efrain E. (1 March 2019). "The fourth ferroic order: Current status on ferrotoroidic materials". Journal of Solid State Chemistry. 271: 175–190. doi: 10.1016/j.jssc.2018.12.035 . ISSN   0022-4596.
  13. Lehmann, Jannis; Donnelly, Claire; Derlet, Peter M.; Heyderman, Laura J.; Fiebig, Manfred (2019), "Poling of an artificial magneto-toroidal crystal", Nature Nanotechnology, 14 (2): 141–144, doi:10.1038/s41565-018-0321-x, PMID   30531991, S2CID   54474479 .
  14. Boudjema, F.; Hamzaoui, C.; Rahal, V.; Ren, H. C. (1989), "Electromagnetic properties of generalized Majorana particles", Phys. Rev. Lett., 62 (8): 852–854, Bibcode:1989PhRvL..62..852B, doi:10.1103/PhysRevLett.62.852, PMID   10040354
  15. Ho, C. M.; Scherrer, R. J. (2013), "Anapole dark matter", Phys. Lett. B, 722 (8): 341–346, arXiv: 1211.0503 , Bibcode:2013PhLB..722..341H, doi:10.1016/j.physletb.2013.04.039, S2CID   15472526
  16. "New, simple theory may explain mysterious dark matter". Vanderbilt University. 2013.

Literature