Trigona spinipes

Last updated • 10 min readFrom Wikipedia, The Free Encyclopedia

Trigona spinipes
Irapua - REFON.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Apidae
Genus: Trigona
Species:
T. spinipes
Binomial name
Trigona spinipes
(Fabricius, 1793)
Trigona spinipes range.jpg
Found in parts of Brazil, Argentina, and Paraguay
Synonyms

Trigona ruficrus Latreille, 1804

Trigona spinipes is a species of stingless bee. It occurs in Brazil, where it is called arapuá, aripuá, irapuá, japurá or abelha-cachorro ("dog-bee"). The species name means "spiny feet" in Latin. Trigona spinipes builds its nest on trees (or on buildings and other human structures), out of mud, resin, wax, and assorted debris, including dung. Therefore, its honey is not fit for consumption, even though it is reputed to be of good quality by itself, and is used in folk medicine. Colonies may have from 5,000 to over 100,000 workers.

Contents

T. spinipes will attack in swarms when they feel the nest is threatened. They cannot sting, and their bite is not very effective. Their main weapon against predatory animals, including human beings, is to entangle themselves in the victim's hair and buzz loudly. They will also aggressively penetrate human bodily openings such as nasal and auditory orifices when in attack mode.

T. spinipes uses odor trails, sometimes extending several hundred metres, in order to lead nestmates from the hive to a food source. Moreover, it can "eavesdrop" on chemical signals used by other bee species (such as carpenter bees, Africanized honeybees and other stingless bees) for the same purpose, killing them or driving them away to take over their food source. [1]

The bee has been considered an agricultural pest for some crops, such as passion fruit, because it damages leaves and flowers while collecting nest materials, and tunnels through the unopened flowers to collect the nectar (thus frustrating their normal pollinators). [2] On the other hand, they are significant pollinators on their own, e.g. for onions. [3]

Taxonomy and phylogeny

Trigona spinipes was described by Johan Christian Fabricius in 1793 but was known under Latreille's 1804 name Trigona ruficrus for many years; however, upon re-examination of a museum specimen, Jesus S. Moure determined that Trigona spinipes is the older name for the species. [4] Trigona spinipes is in the order Hymenoptera, which includes bees, wasps, ants, and sawflies. More specifically it is from the bee family Apidae, which contains well known bee genera such as honeybees (Apis) and bumblebees ( Bombus ). It is from the tribe Meliponini, which comprises all of the genera of stingless bees. The genus Trigona contains some of the most populous species among the stingless bees. [5]

Description and identification

Trigona spinipes constructs large external nests in trees. Compared to other Trigona species such as T. hyalinata, T. spinipes nests are built quite high above the ground. [6] They are usually built on forks between tree branches 4–7 meters from the ground and can be as large as 50–60 cm long and 50–60 cm wide. [4] The nest material consists of mud, wax, plant fragments, and resins. [7] [8] The honeycombs within the nest contain the brood of eggs, larvae and pupae along within stores of honey and pollen. [8] Early studies of T. spinipes nests noted the presence of a dense internal structure referred to as the “scutellum” which was often used to paralyze fish because of its high content of acetylcholine. This dense structure consists of nest waste such as adult bee excrements and its primary role is suggested to be an internal support upon which honeycombs are built. [4] As for diet, Trigona spinipes has been known to collect pollen from a variety of plants, especially Eucalyptus spp., Aloe sp., and Archontophonix sp. [9]

Trigona spinipes on leaf.jpg

Distribution and habitat

Trigona spinipes is quite common in large areas of Brazil as well as Paraguay, Argentina, and other parts of South America. It inhabits a variety of habitats including the cerrado (neotropical savannah), and tropical forests. [4] [7] Studies concerning Trigona spinipes have largely been conducted in Eastern and Southeastern Brazilian states such as São Paulo, Alagoas and Minas Gerais.

Colony cycle

Nest of Trigona spinipes, a couple of months old. The cinder blocks are about 40 cm wide and 19 cm tall. The greenish part is the most recent addition. The light spots on the nest are individual bees. Trigona-spinipes-nest-unicamp-01.png
Nest of Trigona spinipes, a couple of months old. The cinder blocks are about 40 cm wide and 19 cm tall. The greenish part is the most recent addition. The light spots on the nest are individual bees.

For Trigona spinipes, the act of colony initiation is not tied to changes in seasons – which are minimal in the tropic regions that it resides – but rather new colonies emerge as needed. Like other Meliponini bees, new Trigona spinipes colonies begin with swarms. Virgin queens emerge from the nests where they were born and fly with swarms of female workers to a new nesting spot. Drawn by an odor emitting from the virgin queen colony, males aggregate outside of the new nesting spot waiting for the queen to emerge. The queen then flies out for a single mating and returns to the nest. [10] [11]

Within 6 months, a nest can reach full physical size. [4] In terms of number of bees, Trigona spinipes form some of the largest stingless bee colonies in the world, ranging in size from 5,000 to over 100,000 workers. [7] Some colonies can reach 180,000 individuals, which is one order of magnitude larger than the size of honey bee colonies. The nests are perennial. [12]

Behavior

Polarized odor-trail communication

Like all other stingless bees, Trigona spinipes is highly social. When foraging, the workers utilize polarized odor-trail communication to relay the locations of food sources to each other. Unlike classic pheromone trails which extend from the food source to the nest, these polarized pheromone signals are short and do not reach the nest. They likely evolved to be short so as to not lead eavesdropping predators back to their nest. [7] What makes these trails polarized is that they are strongest at the food source and taper off moving away from it. This allows other bees following the signal to arrive at the food in large numbers without wasting time looking for food along the trail. [7] Octyl octanoate is the most significant component of the trail pheromone. It is emitted from the cephalic labial glands of Trigona spinipes and makes up approximately 74% of the secretion. Studies found synthetically produced octyl octanoate to be equally attractive to natural extract derived from the labial glands of foragers. [5]

Male mating behavior

Because Trigona spinipes queens only mate once in their lifetimes, there is tremendous competition between males to copulate with virgin queens. Usually 30–50 but sometimes even hundreds of males can be counted near virgin queen colonies in lek-like groups. The males come from great distances and from a variety of nests. There is a very low probability that a male will ever mate. They stay inside the colony until the age of 2–3 weeks and then leave the nest and live the life of a solitary male bee, which might be 4–6 weeks. While living alone, they will forage with conspecific workers and may follow these workers back to their nests to learn the locations of conspecific nests. [10]

Communication

While Trigona spinipes workers follow their nest-mates pheromone trails to food resources, they have been shown to follow scent marks left by another stingless bee Melipona rufiventris. They do this when they are foraging for new sources of food. Afterwards, Trigona spinipes will attack foraging Melipona rufiventris bees and take over their food. Some hypothesize that honey bee dance evolved to prevent eavesdropping espionage of this sort. [7]

The pheromone signal laid down by Trigona spinipes have been found, surprisingly, to be a deterrent to the more dominant stingless bee species Trigona hyalinata . The reason for this is not clear, but it is hypothesized that the dominant specie wants to avoid costs and injuries associated with seizing a food source from Trigona spinipes rather than finding its own source. [13] Trigona hyalinata are attracted to food sources with fewer Trigona spinipes foragers, because they can easily overpower a small number of their competitors. [14]

Aggression

Trigona spinipes is locally known for its aggressiveness. Despite lacking the ability to sting, workers will pursue intruders and bite them. Each of their two mandibles have 5 sharp teeth. A study found that among 12 stingless bees investigated, Trigona spinipes was one of the 6 species that engaged in suicidal biting. The phenomenon of suicidal biting involved workers biting a target intruder so tenaciously that a significant number of the workers suffered fatal injuries. Of the 6 bees which engaged in suicidal biting, Trigona spinipes displayed the most aggressive behavior overall. [15]

Kin selection

Sex and caste determination

Sex in Trigona spinipes is determined by whether or not the eggs are fertilized. Fertilized eggs are diploid and become females while unfertilized eggs are haploid and become males. Caste determination is trophic, meaning that it is not hereditary, but rather depends on the quantity and quality of food consumed by larvae. [16] Female larvae which consume better and higher quality food develop 12 rather than the usual 4 ovarioles at the pupal stage which later develop into queens. This trophic caste determination is the reason that Trigona spinipes queens are larger than workers. There is no size difference between queens and workers in other Meliponini species which utilize trophogenic caste determination mechanisms. [17] Virgin queens pose a threat to established queens. They are usually not needed by the colony so they are usually either killed by workers or imprisoned. [18]

Workers laying eggs

Although they are smaller and have fewer ovarioles than queens, workers retain the ability to lay viable eggs. This ability is somewhat limited. Workers which are in close proximity to the queen often lay trophic or sterile eggs presumably due to hormone signals from the queen. In addition, the queen caste routinely consumes eggs laid by workers. [16]

Lack of polyandry

Unlike what might be expected for such large colonies, there is no polyandry or polygyny in Trigona spinipes, such as can be found in honeybees. The sperm limitation hypothesis for the evolution of polyandry postulates that polyandry – the behavior of a queen mating with multiple males – evolved partly as a way for the queen to obtain enough sperm to fertilize her eggs. A positive correlation has been found between polyandry and colony size across a variety of insects including ants, bees, and wasps. Polyandry also has the advantage of promoting genetic diversity in large colonies, which promotes disease resistance, as has been shown in other bee species that are usually monandrous. [19] As such, since Trigona spinipes are not polyandrous, the mechanisms by which they promote genetic diversity are not clear. [12]

Worker–queen conflict

The fact that Trigona spinipes colonies are headed by singly mated queens leads to conflict between workers and the queen over male production. Workers have the ability to lay unfertilized haploid eggs which will develop into males. Kin selection argues that it is in the workers favor to do this. This is because each worker is more related to her own sons (relatedness=0.5) than to the queen's sons (relatedness=0.25). In bee species such as honeybees, which are headed by polyandrous queens workers, workers are more related to the queen's sons (relatedness=0.25) than they are to each other's sons (relatedness = 0.125), so they consume each other's sons in a phenomenon known as worker policing. However, this is not the case in Trigona spinipes. There is ongoing conflict between queens and workers over egg laying with eggs constantly being consumed. This conflict may explain why Trigona spinipes, unlike honeybees, lay male and female eggs in identical cells. This makes it more difficult for workers to determine where the queen's male eggs are located. [18]

Ecology

Pollination ecology

It is an effective pollinator of Nymphaea pulchella . In some cases, the bees coated in pollen fall into the stigmatic fluid and die. [20]

Human importance

Trigona spinipes serves as major pollinators of tropical plants, it pollinates a broad variety of species across South America and is considered the ecological equivalent of the honey bee. [12] However, Trigona spinipes has also be found to damage a variety of food crops while collecting nest materials. It has been shown to damage the fruits and flowers of rabbiteye blueberry plants, scarify the fruits of passion fruit, and damage broccoli floral stems. [8]

Related Research Articles

<span class="mw-page-title-main">Stingless bee</span> Bee tribe, reduced stingers, strong bites

Stingless bees, sometimes called stingless honey bees or simply meliponines, are a large group of bees, comprising the tribe Meliponini. They belong in the family Apidae, and are closely related to common honey bees, carpenter bees, orchid bees, and bumblebees. Meliponines have stingers, but they are highly reduced and cannot be used for defense, though these bees exhibit other defensive behaviors and mechanisms. Meliponines are not the only type of bee incapable of stinging: all male bees and many female bees of several other families, such as Andrenidae, also cannot sting. Some stingless bees have powerful mandibles and can inflict painful bites.

<i>Bombus terrestris</i> Species of bee

Bombus terrestris, the buff-tailed bumblebee or large earth bumblebee, is one of the most numerous bumblebee species in Europe. It is one of the main species used in greenhouse pollination, and so can be found in many countries and areas where it is not native, such as Tasmania. Moreover, it is a eusocial insect with an overlap of generations, a division of labour, and cooperative brood care. The queen is monandrous which means she mates with only one male. B. terrestris workers learn flower colours and forage efficiently.

<i>Apis florea</i> Species of bee

The dwarf honey bee, Apis florea, is one of two species of small, wild honey bees of southern and southeastern Asia. It has a much wider distribution than its sister species, Apis andreniformis. First identified in the late 18th century, Apis florea is unique for its morphology, foraging behavior and defensive mechanisms like making a piping noise. Apis florea have open nests and small colonies, which makes them more susceptible to predation than cavity nesters with large numbers of defensive workers. These honey bees are important pollinators and therefore commodified in countries like Cambodia.

<i>Schwarziana quadripunctata</i> Species of bee

Schwarziana quadripunctata is a small, stingless bee found in a stretch of the South American Amazon from Goiás, Brazil, through Paraguay, to Misiones, Argentina. This highly eusocial insect constructs earthen nests in the subterranean level of the subtropical environment, an unusual feature among other stingless bees. The species ranges in sizes from 6.0 to 7.5 millimetres and feeds on a diverse diet of flowering plants found abundantly on the forest floor, including guacatonga and the mistletoe species Struthanthus concinnus.

<i>Trigona</i> Genus of bees

Trigona is one of the largest genera of stingless bees, comprising about 32 species, exclusively occurring in the New World, and formerly including many more subgenera than the present assemblage; many of these former subgenera have been elevated to generic status.

<span class="mw-page-title-main">Early bumblebee</span> Species of bee

The early bumblebee or early-nesting bumblebee is a small bumblebee with a wide distribution in most of Europe and parts of Asia. It is very commonly found in the UK and emerges to begin its colony cycle as soon as February which is earlier than most other species, hence its common name. There is even some evidence that the early bumblebee may be able to go through two colony cycles in a year. Like other bumblebees, Bombus pratorum lives in colonies with queen and worker castes. Bombus pratorum queens use aggressive behavior rather than pheromones to maintain dominance over the workers.

<i>Tetragonula carbonaria</i> Species of bee

Tetragonula carbonaria is a stingless bee, endemic to the north-east coast of Australia. Its common name is sugarbag bee. They are also occasionally referred to as bush bees. The bee is known to pollinate orchid species, such as Dendrobium lichenastrum, D. toressae, and D. speciosum. It has been identified as an insect that collects pollen from the cycad Cycas media. They are also known for their small body size, reduced wing venation, and highly developed social structure comparable to honey bees.

<i>Tetragonisca angustula</i> Species of bee

Tetragonisca angustula is a small eusocial stingless bee found in México, Central and South America. It is known by a variety of names in different regions. A subspecies, Tetragonisca angustula fiebrigi, occupies different areas in South America and has a slightly different coloration.

<i>Tetragonula iridipennis</i> Species of bee

The Indian stingless bee or dammar bee, Tetragonula iridipennis, is a species of bee belonging to the family Apidae, subfamily Apinae. It was first described by Frederick Smith in 1854 who found the species in what is now the island of Sri Lanka. Many older references erroneously placed this species in Melipona, an unrelated genus from the New World, and until recently it was placed in Trigona, therefore still often mistakenly referred to as Trigona iridipennis. For centuries, colonies of T. iridipennis have been kept in objects such as clay pots so that their highly prized medicinal honey can be utilized.

<i>Melipona bicolor</i> Species of bee

Melipona bicolorLepeletier, 1836, commonly known as Guaraipo or Guarupu, is a eusocial bee found primarily in South America. It is an inhabitant of the Araucaria Forest and the Atlantic Rainforest, and is most commonly found from South to East Brazil, Bolivia, Argentina, and Paraguay. It prefers to nest close to the soil, in hollowed trunks or roots of trees. M. bicolor is a member of the tribe Meliponini, and is therefore a stingless bee. This species is unique among the stingless bees species because it is polygynous, which is rare for eusocial bees.

<i>Plebeia remota</i> Species of bee

Plebeia remota is a species of stingless bee that is in the family Apidae and tribe Meliponini. Bees of the species are normally found in a few states in southern Brazil and their nests can be found in tree cavities. Depending on the region, P. remota may have a different morphology and exhibit different behaviors. The bee's diet consists of nectar and pollen that are collected intensely from a few sources. Researchers have conducted a multitude of studies analyzing the changes that occur in the colony during reproductive diapause and what happens during the provisioning and oviposition process or POP.

<i>Trigona corvina</i> Species of bee

Trigona corvina is a species of stingless bee that lives primarily in Central and South America. In Panama, they are sometimes known as zagañas. They live in protective nests high in the trees, but they can be extremely aggressive and territorial over their resources. They use their pheromones to protect their food sources and to signal their location to nest mates. This black stingless bees of the tribe Meliponini can be parasitic toward citrus trees but also helpful for crop pollination.

<i>Melipona subnitida</i> Species of bee

Melipona subnitida is a neotropical bee species in the Apidae family found in the dry areas of Northeastern Brazil. This species of stingless bees practices single mating, monogynous habits.

<i>Nannotrigona testaceicornis</i> Species of bee

Nannotrigona testaceicornis is a eusocial stingless bee species of the order Hymenoptera and the genus Nannotrigona. Its local common name is abelhas iraí. This species has a large geographic distribution and occupies different biomes, including urban areas, around Neotropical America. The bees of this species nest in trees or artificial cavities because of this broad distribution. N. testaceicornis is important for agriculture because it will pollinate a vast number of plant species year round.

<i>Scaptotrigona postica</i> Species of bee

Scaptotrigona postica is a species of stingless bee that lives mainly in Brazil. It is a eusocial bee in the tribe Meliponini. S. postica is one of 25 species in the genus Scaptotrigona and is a critical pollinator of the tropical rain forests of Brazil. They construct their nests in hollowed sections of tree trunks, allowing for effective guarding at the nest entrance. This species shows colony structure similar to most members of the Meliponini tribe with three roles within the colony: queen, worker, and male. S. postica individuals have different forms of communication from cuticular hydrocarbons to pheromones and scent trails. Communication is especially useful during worker foraging for nectar and pollen through the Brazilian tropical rain forests. S. postica is a very important pollinator of the Brazilian tropical rain forests and is widely appreciated for its honey. Stingless bees account for approximately 30% of all pollination of the Brazilian Caatinga and Pantanal ecosystems and up to 90% of the pollination for many species of the Brazilian Atlantic Forest and the Amazon.

<i>Paratrigona subnuda</i> Species of bee

Paratrigona subnuda, commonly known as the jataí-da-terra, is a species of eusocial stingless bee in the family Apidae and tribe Meliponini. These social bees are prevalent in Neotropical moist forests, including Brazilian Atlantic and other South American forests. They inhabit spherical nests in moist underground environments with their forest habitats. Within their Neotropical habitats the P. subnuda is considered to be a very successful and common species of bee. P. subnuda’s main source of food is pollen and nectar from a large variety of native Mesoamerican tropical plants. They have been extensively studied due to social conflicts arising from single mate behaviors and particular virgin behaviors. P. subnuda also exhibits the particular daily behavior in which they open the nest entrance at dawn and close the entrance at dusk when all their activities are done.

<i>Melipona quadrifasciata</i> Species of bee

Melipona quadrifasciata is a species of eusocial, stingless bee of the order Hymenoptera. It is native to the southeastern coastal states of Brazil, where it is more commonly known as mandaçaia, which means "beautiful guard," as there is always a bee at the narrow entrance of the nest. M. quadrifasciata constructs mud hives in the hollows of trees to create thin passages that only allow one bee to pass at a time. Because they are stingless bees, M. quadrifasciata is often used as pollinators in greenhouses, outperforming honey bees in efficiency and leading to overall larger yields of fruits that were heavier, larger, and contained more seeds.

<i>Melipona scutellaris</i> Species of bee

Melipona scutellaris is a eusocial stingless bee species of the order Hymenoptera and the genus Melipona. It is considered to be the reared Melipona species with the largest distribution in the North and Northeast regions of Brazil, with records from Rio Grande do Norte down to Bahia. Its common name, Uruçu, comes from the Tupi "eiru su", which in this indigenous language means "big bee". Their honey is highly desirable and the materials they create for nests have been proven to be a promising source of antibiofilm agents and to present selectivity against human cancer cell lines at low concentrations compared to normal cells.

<i>Trigona fuscipennis</i> Species of bee

Trigona fuscipennis is a stingless bee species that originates in Mexico but is also found in Central and South America. They are an advanced eusocial group of bees and play a key role as pollinators in wet rainforests. The species has many common names, including mapaitero, sanharó, abelha-brava, xnuk, k'uris-kab, enreda, corta-cabelo, currunchos, zagaño, and enredapelos.

<i>Lestrimelitta limao</i> Species of bee

Lestrimelitta limao is a neotropical eusocial bee species found in Brazil and Panama and is part of the Apidae family. It is a species of stingless bees that practices obligate nest robbing. They have never been spotted foraging from flowers, an observation that supports their raiding behavior. Because of their lack of hind corbiculae, they must raid to obtain enough protein in their diet in the form of pollen and nectar. Lestrimelitta limao secrete a lemon-scented alarm allomone, from which they receive their name, in order to conduct successful raids. L. limao are hypothesized to produce poisonous honey that is toxic if consumed by humans. Because robber bees are so rare and difficult to observe, there is a limited scope of information available.

References

  1. James C. Nieh; Lillian S. Barreto; Felipe A. L. Contrera & Vera L. Imperatriz-Fonseca (2004). "Olfactory eavesdropping by a competitively foraging stingless bee, Trigona spinipes". Proceedings of the Royal Society of London B. 271 (1548): 1633–1640. doi:10.1098/rspb.2004.2717. PMC   1691773 . PMID   15306311.
  2. Arlindo L. Boiça Jr.; Terezinha M. dos Santos & Jairo Passilongo (2004). "Trigona spinipes (Fabr.) (Hymenoptera: Apidae) em Espécies de Maracujazeiro: Flutuação Populacional, Horário de Visitação e Danos às Flores". Neotropical Entomology. 33 (2): 135–139. doi: 10.1590/s1519-566x2004000200002 . hdl: 11449/2314 .
  3. Maria C. A. Lorenzon, Ângelo R. Rodrigues, and João R. G.C. de Souza (1993). "Comportamento polinizador de Trigona spinipes (Hymeotpera: Apidae) na florada da cebola (Allium cepa L.) híbrida". Pesquisa Agropecuária Brasileira. 28 (2): 217–221.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 3 4 5 Nogueira-Neto, Paulo (1962-12-01). "The Scutellum Nest Structure of Trigona (Trigona) spinipes Fab. (Hymenoptera: Apidae)". Journal of the New York Entomological Society. 70 (4): 239–264. JSTOR   25005834.
  5. 1 2 Schorkopf, Dirk Louis P.; Jarau, Stefan; Francke, Wittko; Twele, Robert; Zucchi, Ronaldo; Hrncir, Michael; Schmidt, Veronika M.; Ayasse, Manfred; Barth, Friedrich G. (2007-03-22). "Spitting out information: Trigona bees deposit saliva to signal resource locations". Proceedings of the Royal Society of London B: Biological Sciences. 274 (1611): 895–899. doi:10.1098/rspb.2006.3766. ISSN   0962-8452. PMC   2093984 . PMID   17251108.
  6. Lichtenberg, E. M.; Imperatriz-Fonseca, V. L.; Nieh, J. C. (2009-12-18). "Behavioral suites mediate group-level foraging dynamics in communities of tropical stingless bees". Insectes Sociaux. 57 (1): 105–113. doi:10.1007/s00040-009-0055-8. ISSN   0020-1812. PMC   2803754 . PMID   20098501.
  7. 1 2 3 4 5 6 Nieh, James C.; Barreto, Lillian S.; Contrera, Felipe A. L.; Imperatriz–Fonseca, Vera L. (2004-08-07). "Olfactory eavesdropping by a competitively foraging stingless bee, Trigona spinipes". Proceedings of the Royal Society of London B: Biological Sciences. 271 (1548): 1633–1640. doi:10.1098/rspb.2004.2717. ISSN   0962-8452. PMC   1691773 . PMID   15306311.
  8. 1 2 3 Nunes dos Santos, Adrian Jorge (2011). "Stingless bees damage broccoli inflorescences when collecting fibers for nest building". Scientia Agricolta.
  9. Cortopassi-Laurino, M. & M. Ramalho (1988). "Pollen harvest by Africanized Apis mellifera and Trigona spinipes in Sao Paulo. Botanical and ecological views" (PDF). Apidologie. 19 (1): 1–24. doi: 10.1051/apido:19880101 .
  10. 1 2 H.W. Velthuis, Hayo; Koedam, Dirk; L. Imperatriz-Fonseca, Vera (2005-01-01). "The males of Melipona and other stingless bees, and their mothers". Apidologie. 36 (2): 169–185. doi: 10.1051/apido:2005014 .
  11. Roubik, David W. (2006-01-01). "Stingless bee nesting biology" (PDF). Apidologie. 37 (2): 124–143. doi: 10.1051/apido:2006026 .
  12. 1 2 3 Jaffé, Rodolfo; Pioker-Hara, Fabiana C.; Santos, Charles F. dos; Santiago, Leandro R.; Alves, Denise A.; Kleinert, Astrid de M. P.; Francoy, Tiago M.; Arias, Maria C.; Imperatriz-Fonseca, Vera L. (2014-01-26). "Monogamy in large bee societies: a stingless paradox". Naturwissenschaften. 101 (3): 261–264. Bibcode:2014NW....101..261J. doi:10.1007/s00114-014-1149-3. ISSN   0028-1042. PMID   24463620. S2CID   14130180.
  13. Lichtenberg, Elinor M.; Hrncir, Michael; Turatti, Izabel C.; Nieh, James C. (2010-11-18). "Olfactory eavesdropping between two competing stingless bee species". Behavioral Ecology and Sociobiology. 65 (4): 763–774. doi:10.1007/s00265-010-1080-3. ISSN   0340-5443. PMC   3058493 . PMID   21475736.
  14. King, Cynthia (2014-07-07). "Bee 'shouts' might evolve as more effective than 'whispers'". WSU News. Retrieved 2015-09-27.
  15. Shackleton, Kyle; Toufailia, Hasan Al; Balfour, Nicholas J.; Nascimento, Fabio S.; Alves, Denise A.; Ratnieks, Francis L. W. (2014-11-08). "Appetite for self-destruction: suicidal biting as a nest defense strategy in Trigona stingless bees". Behavioral Ecology and Sociobiology. 69 (2): 273–281. doi:10.1007/s00265-014-1840-6. ISSN   0340-5443. PMC   4293493 . PMID   25620834.
  16. 1 2 da Cruz-Landim, Carminada (2000). "Ovarian development in Meliponine bees (Hymenoptera: Apidae): the effect of queen presence and food on worker ovary development and egg production". Genetics and Molecular Biology. 23: 83–88. doi: 10.1590/s1415-47572000000100015 . hdl: 11449/30452 .
  17. Lisboa, L. C. O. (2005). "Effect of Larval Food Amount on Ovariole Development in Queens of Trigona spinipes (Hymenoptera, Apinae)". Anatomia, Histologia, Embryologia: Journal of Veterinary Medicine Series C. 34 (3): 179–184. doi:10.1111/j.1439-0264.2005.00591.x. PMID   15929734. S2CID   40721374.
  18. 1 2 Peters, John M.; Queller, David C.; Imperatriz–Fonseca, Vera L.; Roubik, David W.; Strassmann, Joan E. (1999-02-22). "Mate number, kin selection and social conflicts in stingless bees and honeybees". Proceedings of the Royal Society of London B: Biological Sciences. 266 (1417): 379–384. doi:10.1098/rspb.1999.0648. ISSN   0962-8452. PMC   1689682 .
  19. Baer, B. & P. Schmid-Hempel (2001). "Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris". Evolution. 55 (8): 1639–1643. doi:10.1554/0014-3820(2001)055[1639:ucopfp]2.0.co;2. PMID   11580023.
  20. Chalegre, S. L., Domingos-Melo, A., de Lima, C. T., Giulietti, A. M., & Machado, I. C. (2020). Nymphaea pulchella (Nymphaeaceae) and Trigona spinipes (Apidae) interaction: From florivory to effective pollination in ponds surrounded by pasture. Aquatic Botany, 166, 103267.