Tryon's Rat Experiment

Last updated

Tryon's Rat Experiment is a psychology experiment conducted by Robert Tryon in 1940 and published in the Yearbook of the National Society for Studies in Education. [1]

Contents

Experiment set-up

Tyron's rat chart Tryon's Rat Graph.png
Tyron's rat chart

Prior to Robert Tryon’s study of selective rat breeding, concluded in 1942, many psychologists believed that environmental, rather than genetic, differences produced individual behavioral variations. Tryon sought to demonstrate that genetic traits often did, in fact, contribute to behavior. To do so, Tryon created an experiment that tested the proficiency of successive generations of rats in completing a maze. He initiated the experiment by exposing a genetically diverse group of rats to the maze, labeling those who made the fewest errors “bright”, and those with the most errors “dull”. Tryon then mated the “bright” males with “bright” females, and “dull” males with “dull” females. After their children matured, Tryon repeated the maze test with them, and again separated the “bright” and the “dull”, again breeding “bright” with “bright” and “dull” with “dull”. Tryon continued this process for seven generations, creating two distinct breeds of “bright” and “dull” rats. In order to demonstrate that behavior had little effect on the genetically selectively bred rats, and lessen the chance of error when making his conclusions, Tryon cross-fostered the rats—that is, he had a “dull” mother raise “bright” children, and vice versa. The independent variables in his experiment were the parental pairings, the choice of environment and parents for upbringing, and number of rats put through the maze. The dependent variable was the number of errors made by the rats in 19 trials of the maze. [2]

Implications and conclusions

While Tryon's results showed that the “bright" rats made significantly fewer errors in the maze than the “dull" rats did, the question exists of what other sensory, motor, motivational, and learning processes also influenced the results of the experiment. A common misconception of this experiment and other similar experiments is that the observed change in the performance in the maze directly correlates with general learning ability. This is not the case. Rather, it has become a widely accepted belief among behavior geneticists that the superiority of the bright rats may have been confined to Tryon’s specific test; thus, it is not necessarily due to a difference in learning capacity between the two groups of rats. Genetic variation, such as better peripheral vision, can make some rats “bright” and others “dull”, but does not determine their intelligence. [3] Nonetheless, Tryon’s famous rat-maze experiment demonstrated that the difference between rat performances was genetic since their environments were controlled and identical. [4]

See also

Related Research Articles

Nature versus nurture is a long-standing debate in biology and society about the relative influence on human beings of their genetic inheritance (nature) and the environmental conditions of their development (nurture). The alliterative expression "nature and nurture" in English has been in use since at least the Elizabethan period and goes back to medieval French. The complementary combination of the two concepts is an ancient concept. Nature is what people think of as pre-wiring and is influenced by genetic inheritance and other biological factors. Nurture is generally taken as the influence of external factors after conception e.g. the product of exposure, experience and learning on an individual.

Inbred strains are individuals of a particular species which are nearly identical to each other in genotype due to long inbreeding. A strain is inbred when it has undergone at least 20 generations of brother x sister or offspring x parent mating, at which point at least 98.6% of the loci in an individual of the strain will be homozygous, and each individual can be treated effectively as clones. Some inbred strains have been bred for over 150 generations, leaving individuals in the population to be isogenic in nature. Inbred strains of animals are frequently used in laboratories for experiments where for the reproducibility of conclusions all the test animals should be as similar as possible. However, for some experiments, genetic diversity in the test population may be desired. Thus outbred strains of most laboratory animals are also available, where an outbred strain is a strain of an organism that is effectively wildtype in nature, where there is as little inbreeding as possible.

<span class="mw-page-title-main">Edward C. Tolman</span>

Edward Chace Tolman was an American psychologist and a professor of psychology at the University of California, Berkeley. Through Tolman's theories and works, he founded what is now a branch of psychology known as purposive behaviorism. Tolman also promoted the concept known as latent learning first coined by Blodgett (1929). A Review of General Psychology survey, published in 2002, ranked Tolman as the 45th most cited psychologist of the 20th century.

Observer bias is one of the types of detection bias and is defined as any kind of systematic divergence from accurate facts during observation and the recording of data and information in studies. The definition can be further expanded upon to include the systematic difference between what is observed due to variation in observers, and what the true value is.

<span class="mw-page-title-main">Spatial memory</span> Memory about ones environment and spatial orientation

In cognitive psychology and neuroscience, spatial memory is a form of memory responsible for the recording and recovery of information needed to plan a course to a location and to recall the location of an object or the occurrence of an event. Spatial memory is necessary for orientation in space. Spatial memory can also be divided into egocentric and allocentric spatial memory. A person's spatial memory is required to navigate around a familiar city. A rat's spatial memory is needed to learn the location of food at the end of a maze. In both humans and animals, spatial memories are summarized as a cognitive map.

<span class="mw-page-title-main">Radial arm maze</span>

The radial arm maze was designed by Olton and Samuelson in 1976 to measure spatial learning and memory in rats. The original apparatus consists of eight equidistantly spaced arms, each about 4 feet long, and all radiating from a small circular central platform. At the end of each arm there is a food site, the contents of which are not visible from the central platform.

<span class="mw-page-title-main">Human behaviour genetics</span> Field that examines the role of genetic and environmental influences on human behaviour

Human behaviour genetics is an interdisciplinary subfield of behaviour genetics that studies the role of genetic and environmental influences on human behaviour. Classically, human behavioural geneticists have studied the inheritance of behavioural traits. The field was originally focused on determining the importance of genetic influences on human behaviour. It has evolved to address more complex questions such as: how important are genetic and/or environmental influences on various human behavioural traits; to what extent do the same genetic and/or environmental influences impact the overlap between human behavioural traits; how do genetic and/or environmental influences on behaviour change across development; and what environmental factors moderate the importance of genetic effects on human behaviour. The field is interdisciplinary, and draws from genetics, psychology, and statistics. Most recently, the field has moved into the area of statistical genetics, with many behavioural geneticists also involved in efforts to identify the specific genes involved in human behaviour, and to understand how the effects associated with these genes changes across time, and in conjunction with the environment.

<span class="mw-page-title-main">Cognitive map</span> Mental representation of information

A cognitive map is a type of mental representation which serves an individual to acquire, code, store, recall, and decode information about the relative locations and attributes of phenomena in their everyday or metaphorical spatial environment. The concept was introduced by Edward Tolman in 1948. He tried to explain the behavior of rats that appeared to learn the spatial layout of a maze, and subsequently the concept was applied to other animals, including humans. The term was later generalized by some researchers, especially in the field of operations research, to refer to a kind of semantic network representing an individual's personal knowledge or schemas.

A cognitive shift or shift in cognitive focus is triggered by the brain's response and change due to some external force.

<span class="mw-page-title-main">Barnes maze</span>

The Barnes maze is a tool used in psychological laboratory experiments to measure spatial learning and memory. The test was first developed by Dr. Carol Barnes in 1979. The test subjects are usually rodents such as mice or lab rats, which either serve as a control or may have some genetic variable or deficiency present in them which will cause them to react to the maze differently. The basic function of Barnes maze is to measure the ability of a mouse to learn and remember the location of a target zone using a configuration of distal visual cues located around the testing area. This noninvasive task is useful for evaluating novel chemical entities for their effects on cognition as well as identifying cognitive deficits in transgenic strains of rodents that model for disease such as Alzheimer's disease. It is also used by neuroscientists to determine whether there is a causative effect after mild traumatic brain injury on learning deficits and spatial memory retention (probe) at acute and chronic time points. This task is dependent on the intrinsic inclination of the subjects to escape from an aversive environment and on hippocampal-dependent spatial reference memory.

<span class="mw-page-title-main">Latent learning</span> Subconscious retention of information without reinforcement

Latent learning is the subconscious retention of information without reinforcement or motivation. In latent learning, one changes behavior only when there is sufficient motivation later than when they subconsciously retained the information.

Willard Stanton Small was an experimental psychologist. Small was the first person to use the behavior of rats in mazes as a measure of learning. In 1900 and 1901, he published journal two of three in "Experimental Study of the Mental Processes of the Rat" in the American Journal of Psychology. The maze he used in this study was an adaptation of the Hampton Court Maze, as suggested to him by Edmund Sanford at Clark University.

The Kerplunk experiment was a famous stimulus and response experiment conducted on rats and demonstrates the ability to turn voluntary motor responses into a conditioned response. The purpose of the experiment was to get kinaesthetic feedback rather than guidance through external stimuli through maze learning. It was conducted in 1907 by John B. Watson and Harvey A. Carr and was named after the sound the rat made after running into the end of the maze. The study would help form a chain of responses, hypothesis proposed by Watson.

Behavioural genetics, also referred to as behaviour genetics, is a field of scientific research that uses genetic methods to investigate the nature and origins of individual differences in behaviour. While the name "behavioural genetics" connotes a focus on genetic influences, the field broadly investigates the extent to which genetic and environmental factors influence individual differences, and the development of research designs that can remove the confounding of genes and environment. Behavioural genetics was founded as a scientific discipline by Francis Galton in the late 19th century, only to be discredited through association with eugenics movements before and during World War II. In the latter half of the 20th century, the field saw renewed prominence with research on inheritance of behaviour and mental illness in humans, as well as research on genetically informative model organisms through selective breeding and crosses. In the late 20th and early 21st centuries, technological advances in molecular genetics made it possible to measure and modify the genome directly. This led to major advances in model organism research and in human studies, leading to new scientific discoveries.

Purposive behaviorism is a branch of psychology that was introduced by Edward Tolman. It combines the study of behavior while also considering the purpose or goal of behavior. Tolman thought that learning developed from knowledge about the environment and how the organism relates to its environment. Tolman's goal was to identify the complex cognitive mechanisms and purposes that guided behavior. His theories on learning went against the traditionally accepted stimulus-response connections at his time that had been proposed by other psychologists such as Edward Thorndike. Tolman disagreed with John B.Watson's behaviorism, so he initiated his own behaviorism, which became known as purposive behaviorism.

Calvin Springer Hall, Jr., commonly known as Calvin S. Hall, was an American psychologist who studied in the fields of dream research and analysis. He began his systematic research on dreams in the 1940s, and from there he wrote many books, A Primer of Freudian Psychology and A Primer of Jungian Psychology being the best known, and developed a quantitative content analysis system for dreams. Hall's work on temperament and behavior genetics is now only a historical footnote, but was an aid to scientific studies and theories of today.

David Krech was an American Jewish experimental and social psychologist who lectured predominately at the University of California, Berkeley. Throughout his education and career endeavors, Krech was with many psychologists including Edward Tolman, Karl Lashley, and Rensis Likert.

Robert Choate Tryon was an American behavioral psychologist, who pioneered the study of hereditary trait inheritance and learning in animals. His series of experiments with laboratory rats showed that animals can be selectively bred for greater aptitude at certain intelligence tests, but that this selective breeding does not increase the general intelligence of the animals.

<span class="mw-page-title-main">T-maze</span> Forked passage used in animal cognition tests

In behavioral science, a T-maze is a simple forked passage used in animal cognition experiments. It is shaped like the letter T, providing the subject, typically a rodent, with a straightforward choice. T-mazes are used to study how the rodents function with memory and spatial learning through applying various stimuli. Starting in the early 20th century, rodents were used in experiments such as the T-maze. These concepts of T-mazes are used to assess rodent behavior. The different tasks, such as left-right discrimination and forced alternation, are mainly used with rodents to test reference and working memory.

<span class="mw-page-title-main">Cincinnati Water Maze</span> Water maze used in rodent experiments

The Cincinnati Water Maze (CWM) is a type of water maze. Water mazes are experimental equipment used in laboratories; they are mazes that are partially filled with water, and rodents are put in them to be observed and timed as they make their way through the maze. Generally two sets of rodents are put through the maze, one that has been treated, and another that has not, and the results are compared. The experimenter uses this type of maze to learn about the subject's cognitive or emotional processes.

References

  1. Tryon, R. C. (1940). Genetic differences in maze-learning ability in rats. Yearbook of the National Society for Studies in Education, 39, pp. 111-119
  2. Gray, Peter. Psychology. 6th ed. New York: Worth, 2007. Print.
  3. Martinez, Joe and Raymond Kesner. Neurobiology of Learning and Memory. Massachusetts: Elsevier Inc., 2007. Print.
  4. Cooper, R. M. and Zubek, J. P. (1958). "Effects of enriched and restricted early environments on the learning ability of bright and dull rats". Canadian Journal of Psychology 12 (3): 159–164. PMID   13573245

Further reading