Tupolev Tu-2000

Last updated
Tu-2000
Tu-2000.jpg
Artist's impression of the Tu-2000 entering orbit around Earth
Role Hypersonic technology demonstrator
Manufacturer Tupolev OKB
StatusCancelled
Number built0
Variants Tupolev Tu-360

The Tupolev Tu-2000 was a planned hypersonic flight experimental aircraft designed by the Tupolev design bureau. It was intended to test technologies for a single-stage-to-orbit aerospaceplane and also the Tupolev Tu-360 intercontinental bomber.

Contents

Design and development

Development of the Tu-2000 began in 1986 as a Soviet response to the X-30 project in the US. [1] Following the fall of the Soviet Union, Russia took over the project and pursued it until 1992, when it was suspended due to lack of funds. [2]

The experimental technology demonstrator would have weighed 70–90 tonnes (150,000–200,000 lb) with a length of 60 m (196 ft), while the single-stage-to-orbit vehicle would have weighed 210–280 tonnes (460,000–620,000 lb) and carried a maximum payload of 10 tonnes (22,000 lb) into earth orbits 200–400 km (120–250 mi) high. [3]

Work on the project began in the 1970s. The Tupolev Design Bureau began the development of an aerospace plane with a launch weight of about 300 tonnes (660,000 lb). Various propulsion methods were considered, such as liquid rocket engine on fuel elements, aircraft nuclear propulsion, plasma engine, or an ion engine.

The reason for the appearance of the Soviet Air Defense was the appearance of the US Space Shuttle. Works were activated in 1981. Three years later, an aerospace system based on a single-stage orbital aircraft with a liquid-propellant rocket engine was proposed, which could be launched both from the ground and from aircraft carriers. However, to increase efficiency and increase the fuel stock, a variant with a combined power plant of a turbojet engine, ramjet engine, and a liquid rocket engine was soon adopted, which became the prototype of the Tu-2000.

The aircraft was designed as a tailless aircraft, and had an engine and triangular wing low extension located under fuselage. The core of the design was the power plant, which included:

The large number of engines was required to optimize efficiency in different flight modes. Most of the aircraft's volume was occupied by liquid hydrogen fuel tanks. The crew of two people was located in the nose of the fuselage. An automatic crew rescue system was to provide an escape route at all altitudes. The bow section, including the cabin, was detachable. Two escape options were considered: rescued by parachute from the cockpit and an ejection seat.

Radio and electronic equipment was located behind the flight deck. The nose strut chassis was removed in the same compartment. The middle and rear parts of the fuselage held the liquid hydrogen fuel tank. The liquid oxygen tank supplying oxidizer for the rocket engines was located in the tail of the fuselage. Liquid hydrogen was used as fuel for all engines and came from a single fuel system.

The aircraft was designed with tricycle landing gear. The front gear had twin small diameter wheels with high pressure tyres. The main landing gear was to be single-wheeled, retracting to the fuselage compartments.

The VKS[ clarification needed ] was supposed to take off from standard runways up to 3 km (1.9 mi) long, fly back to subsonic speed after takeoff to reach the set starting point of acceleration and before landing for approach to a given airfield; carry out flights to change the airfield base, quickly perform acceleration to a given speed and altitude, including access to a circular orbit; perform multiple orbital maneuvers; perform an autonomous orbital flight of up to a day; perform cruising flight in the atmosphere with hypersonic speeds, perform deceleration with deceleration when returning from orbit; in the process of acceleration to orbital parameters and in the process of descending, perform maneuvering for the passage of a given route and exit to a given orbit and a given airfield; change the orbital flight plane.

Acceleration of the work contributed to the information about the Rockwell X-30 project, a technology demonstrator for the US National Aero-Space Plane (NASP) project. In 1986, two government decrees were issued to develop a similar project. On September 1 of the same year, the Ministry of Defense was released technical task to single-stage reusable video conferencing, capable of solving problems in the atmosphere and near space and performing high-speed intercontinental transatmospheric transportation.

It was planned to implement the project in two stages:

  1. Creation of a Tu-2000A aircraft with a flight weight of 70–90 tonnes (150,000–200,000 lb) and a speed of Mach 6 at an altitude of 30 km (98,000 ft). The VKS was to be 60 m (200 ft) long; with a wing span of 14 m (46 ft); and a 70-degree leading edge wing sweep.
  2. The second stage assumed various implementation options: Tu-2000B, MVKS, and a hypersonic airliner.

By the time of the collapse of the USSR the project was in full swing. Perestroika resulted in lower project costs. However, by December 1991, many structural elements had already been manufactured: the nickel alloy wing torque box, part of the fuselage, cryogenic fuel tanks, and composite fuel lines. [1] For comparison, at the time the US X-30 project was stuck on an attempt to build a titanium alloy section of the fuselage. The Tu-2000 could have been completed by the year 2000, but circumstances had changed.

Due to lack of funding in the summer of 1992, the project was declassified and had to be transferred to a commercial basis. The layout of the MVKS was presented at the Mosaeroshow-92 exhibition. The country's top leadership promised to support the project to raise the country's prestige, but did nothing. Soon, funding was discontinued altogether.

At 1995 prices, the cost of building one Tu-2000 was estimated at $450 million, and the cost of development work estimated as $5.29 billion. At a rate of 20 starts per year, the cost of one start should have been $13.6 million. With adequate funding, the project could have been completed in 13–15 years, but in 1993 the Tu-2000 was cancelled.

Specifications (Single-stage-to-orbit design)

Data from [3]

General characteristics

Performance

Related Research Articles

<span class="mw-page-title-main">Supersonic transport</span> Type of commercial airliner (SST)

A supersonic transport (SST) or a supersonic airliner is a civilian supersonic aircraft designed to transport passengers at speeds greater than the speed of sound. To date, the only SSTs to see regular service have been Concorde and the Tupolev Tu-144. The last passenger flight of the Tu-144 was in June 1978 and it was last flown in 1999 by NASA. Concorde's last commercial flight was in October 2003, with a November 26, 2003 ferry flight being its last airborne operation. Following the permanent cessation of flying by Concorde, there are no remaining SSTs in commercial service. Several companies have each proposed a supersonic business jet, which may bring supersonic transport back again.

<span class="mw-page-title-main">Scramjet</span> Jet engine where combustion takes place in supersonic airflow

A scramjet is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion, but whereas a ramjet decelerates the air to subsonic velocities before combustion using shock cones, a scramjet has no shock cone and slows the airflow using shockwaves produced by its ignition source in place of a shock cone. This allows the scramjet to operate efficiently at extremely high speeds.

<span class="mw-page-title-main">Douglas D-558-2 Skyrocket</span> Experimental supersonic aircraft

The Douglas D-558-2 Skyrocket is a rocket and jet-powered research supersonic aircraft built by the Douglas Aircraft Company for the United States Navy. On 20 November 1953, shortly before the 50th anniversary of powered flight, Scott Crossfield piloted the Skyrocket to Mach 2, or more than 1,290 mph (2076 km/h), the first time an aircraft had exceeded twice the speed of sound.

<span class="mw-page-title-main">Mikoyan-Gurevich I-270</span> Soviet fighter aircraft

The Mikoyan-Gurevich I-270 was a response to a Soviet Air Forces requirement in 1945 for a rocket-powered interceptor aircraft for the point-defence role. In concept and basic configuration, it was related to the early Korolyov RP-318 rocket-powered aircraft which was developed in 1936 and first flew February 20, 1940, and the more recent Bereznyak-Isayev BI-1 Soviet design. Only two prototypes were built, both of which were destroyed in crashes, leading to the cancellation of the project.

<span class="mw-page-title-main">Skylon (spacecraft)</span> Single-stage-to-orbit spaceplane

Skylon is a series of concept designs for a reusable single-stage-to-orbit spaceplane by the British company Reaction Engines Limited (Reaction), using SABRE, a combined-cycle, air-breathing rocket propulsion system. The vehicle design is for a hydrogen-fuelled aircraft that would take off from a specially built reinforced runway, and accelerate to Mach 5.4 at 26 kilometres (85,000 ft) altitude using the atmosphere's oxygen before switching the engines to use the internal liquid oxygen (LOX) supply to take it into orbit. It could carry 17 tonnes (37,000 lb) of cargo to an equatorial low Earth orbit (LEO); up to 11 tonnes (24,000 lb) to the International Space Station, almost 45% more than the capacity of the European Space Agency's Automated Transfer Vehicle; or 7.3 tonnes (16,000 lb) to Geosynchronous Transfer Orbit (GTO), over 24% more than SpaceX Falcon 9 launch vehicle in reusable mode. The relatively light vehicle would then re-enter the atmosphere and land on a runway, being protected from the conditions of re-entry by a ceramic composite skin. When on the ground, it would undergo inspection and necessary maintenance, with a turnaround time of approximately two days, and be able to complete at least 200 orbital flights per vehicle.

<span class="mw-page-title-main">NASA X-43</span> Unmanned US experimental hypersonic aircraft, 2001-2004

The NASA X-43 was an experimental unmanned hypersonic aircraft with multiple planned scale variations meant to test various aspects of hypersonic flight. It was part of the X-plane series and specifically of NASA's Hyper-X program. It set several airspeed records for jet aircraft. The X-43 is the fastest jet-powered aircraft on record at approximately Mach 9.6.

<span class="mw-page-title-main">SABRE (rocket engine)</span> Synergetic Air Breathing Rocket Engine - a hybrid ramjet and rocket engine

SABRE is a concept under development by Reaction Engines Limited for a hypersonic precooled hybrid air-breathing rocket engine. The engine is being designed to achieve single-stage-to-orbit capability, propelling the proposed Skylon spaceplane to low Earth orbit. SABRE is an evolution of Alan Bond's series of LACE-like designs that started in the early/mid-1980s for the HOTOL project.

<span class="mw-page-title-main">Mikoyan-Gurevich MiG-105</span> Soviet cancelled spaceplane project

The Mikoyan-Gurevich MiG-105, part of the Spiral program, was a crewed test vehicle to explore low-speed handling and landing. It was a visible result of a Soviet project to create an orbital spaceplane. The MiG 105 was nicknamed "Lapot", for the shape of its nose.

<span class="mw-page-title-main">Rockwell X-30</span> US NASA & DOD hypersonic project 1986-1993

The Rockwell X-30 was an advanced technology demonstrator project for the National Aero-Space Plane (NASP), part of a United States project to create a single-stage-to-orbit (SSTO) spacecraft and passenger spaceliner. Started in 1986, it was cancelled in the early 1990s before a prototype was completed, although much development work in advanced materials and aerospace design was completed. While a goal of a future NASP was a passenger liner capable of two-hour flights from Washington to Tokyo, the X-30 was planned for a crew of two and oriented towards testing.

The Kuznetsov Design Bureau was a Russian design bureau for aircraft engines, administrated in Soviet times by Nikolai Dmitriyevich Kuznetsov. It was also known as (G)NPO Trud and Kuybyshev Engine Design Bureau (KKBM).

<span class="mw-page-title-main">Supersonic aircraft</span> Aircraft that travels faster than the speed of sound

A supersonic aircraft is an aircraft capable of supersonic flight, that is, flying faster than the speed of sound. Supersonic aircraft were developed in the second half of the twentieth century. Supersonic aircraft have been used for research and military purposes, but only two supersonic aircraft, the Tupolev Tu-144 and the Concorde, ever entered service for civil use as airliners. Fighter jets are the most common example of supersonic aircraft.

<span class="mw-page-title-main">Lavochkin La-250</span> Type of aircraft

The Lavochkin La-250 "Anakonda" was a high-altitude interceptor aircraft prototype developed in the Soviet Union by the Lavochkin design bureau in the 1950s. Its nickname "Anaconda" was invented during the flight test and referred to both the elongated body shape as well as the relatively critical flight characteristics of the machine.

<span class="mw-page-title-main">Boeing X-51 Waverider</span> Unmanned hypersonic experimental aircraft

The Boeing X-51 Waverider is an unmanned research scramjet experimental aircraft for hypersonic flight at Mach 5 and an altitude of 70,000 feet (21,000 m). The aircraft was designated X-51 in 2005. It completed its first powered hypersonic flight on 26 May 2010. After two unsuccessful test flights, the X-51 completed a flight of over six minutes and reached speeds of over Mach 5 for 210 seconds on 1 May 2013 for the longest duration powered hypersonic flight.

Scramjet programs refers to research and testing programs for the development of supersonic combustion ramjets, known as scramjets. This list provides a short overview of national and international collaborations, and civilian and military programs. The USA, Russia, India, and China (2014), have succeeded at developing scramjet technologies.

<span class="mw-page-title-main">Tupolev Tu-244</span> 1979–1993 proposed supersonic passenger airliner

The Tupolev Tu-244 was a proposed supersonic transport (SST) aircraft, developed from the Tu-144. It implemented novel features such as cryogenic fuel to enable flight distances of up to 10,000 km (6,200 mi) and would have carried up to 300 passengers. The project was cancelled in 1993.

<span class="mw-page-title-main">LAPCAT</span>

LAPCAT was a 36-month European FP6 study to examine ways to produce engines for a Mach number 4-8 hypersonic flight aircraft. The project ended in April 2008. It was funded by the European Commission research and development fund, and cost 7 million euros.

<span class="mw-page-title-main">Reaction Engines LAPCAT A2</span> Hypersonic jetliner concept

The Reaction Engines Limited LAPCAT Configuration A2 is a design study for a hypersonic speed jet airliner intended to provide, long range, high capacity commercial transportation.

An airbreathing jet engine is a jet engine that ejects a propelling (reaction) jet of hot exhaust gases after first taking in atmospheric air, followed by compression, heating and expansion back to atmospheric pressure through a nozzle. Alternatively the reaction jet may include a cold jet of ducted bypass air which has been compressed by a fan before returning to atmospheric pressure through an additional nozzle. These engines are gas turbine engines. Engines using only ram for the compression process, and no turbomachinery, are the ramjet and pulsejet.

The Tupolev Tu-360 was a proposed hypersonic strategic bomber conceived by the Tupolev design bureau in the 1980s. It utilized most of the same technologies as the Tupolev Tu-2000.

<span class="mw-page-title-main">X-15 Flight 188</span> Rocket-powered aircraft flight in 1967 operated by the US Air Force and NASA

The North American X-15's Flight 188 on October 3, 1967, was a record-setting flight. William J. Knight took the X-15A-2 hypersonic rocket-powered aircraft to 102,100 feet over Mud Lake, Nevada when flight 188 reached a record-setting top speed of 4,520 mph (7,270 km/h), Mach 6.70.

References

  1. 1 2 Wade, Mark. "Tu-2000". Encyclopedia Astronautica. Archived from the original on December 28, 2016. Retrieved 2019-12-08. This Soviet equivalent to the US X-30 single-stage-to-orbit scramjet aerospaceplane began development in 1986
  2. " Tu-2000 ", astronautix.com , Retrieved 24 April 2010
  3. 1 2 Gordon and Komissarov, 2013. Unflown Wings. Birmingham: Ian Allan Publishing. p. 75