Tylenchulus semipenetrans

Last updated

Citrus nematode
Scientific classification
Kingdom:
Phylum:
Class:
Subclass:
Order:
Superfamily:
Family:
Subfamily:
Genus:
Species:
T. semipenetrans
Binomial name
Tylenchulus semipenetrans
Cobb, 1913

Tylenchulus semipenetrans, also known as the citrus nematode or citrus root nematode, is a species of plant pathogenic nematodes and the causal agent of slow decline of citrus. T. semipenetrans is found in most citrus production areas and diverse soil textures worldwide. Their feeding strategy is semi-endoparasitic and has a very narrow host range among commonly grown crops. These nematodes are considered as major plant-parasitic nematode because they can cause 10-30% losses reported on citrus trees. They also parasitize other hosts such as olive, grape, persimmon and lilac. [1] The citrus nematode was first discovered in California in 1913 by J. R. Hodges, a horticultural inspector for Los Angeles County, and was later described and named by Nathan Cobb that year. [2] [3] T. semipenetrans is the only species of Tylenchulidae that are economically important to agriculture.[ citation needed ]

Contents

Morphology

Citrus nematodes range in length from 0.25 to 0.35 mm (0.0098 to 0.0138 in) long. They have an amalgamated procorpus and metacorpus, distinct isthmus, and a bulb-shaped postcorpus. They are distinct in juveniles. Both the juvenile stages and the adult male stage are vermiform in shape. The male has significantly reduced esophagus and stylet. The posterior end of the female citrus nematode becomes swollen upon feeding. She contains a single ovary and the vulva is subterminal. The female will lay up to 100 eggs deposited in a gelatinous matrix secreted from the nearby excretory pore. The pore is surrounded by small, irregularly shaped lobes; and the excretory duct is directed forward. The rectum and anus are atrophied or absent and non-functional. [2]

Life cycle and reproduction

Life stages of the citrus nematode,Tylenchulus semipenetrans. Life stages of citrus nematode.jpg
Life stages of the citrus nematode,Tylenchulus semipenetrans.

The life cycle of the female citrus nematode is 6–8 weeks long, whereas the male citrus nematode only lives for about 7–10 days. These nematodes reproduce by amphimixis and parthenogenesis. The first-stage juvenile (J1) undergo one molt while still in the egg. The J1 has no stylet. The second-stage juveniles (J2) hatch from the eggs and the sex can be distinguished at this stage. The J2 male is short and fat. Juveniles will undergo two more molts into the J3 and J4 before becoming young adults. The citrus male nematodes are required for reproduction with females when their posterior end is exposed on the root surface. The J2 male has a stylet while the J3 and J4 have a weaker stylet. The J2 female is longer and thinner than males and they do not molt until feeding site is established. The female juveniles begin feeding ectoparasitically on epidermal root cells. It is not until the female citrus nematode becomes a young adult that she becomes the infective stage. The anterior end of the young female penetrates into the cortex of the root and begins feeding on 3-6 nurse cells. This intense feeding by the adult female will cause the posterior end to enlarge outside the root and start producing eggs. After fertilization, the female lays its eggs outside of the root in a gelatinous matrix extruded from excretory pore located near the vulva. [4]

Host-parasite interaction

Sequential photos showing progression of slow decline of citrus caused by T. semipenetrans Slow decline disease.jpg
Sequential photos showing progression of slow decline of citrus caused by T. semipenetrans

High population densities of the citrus nematode can result in severe damage on the citrus tree. Some above ground symptoms can be observed such as suppression of citrus tree growth, lack of vigor or decline symptoms, yellowing of foliage and small size of fruit. The young adult females penetrate into the cortex cells, become sedentary and form multiple‘nurse’ cells. The nematode feeding from these nurse cells reduces the amount of water and nutrients available to the growing plant.

For below ground symptoms, the infected roots are thicker, darker, decayed and appear dirty. This is caused by soil particles sticking the gelatinous matrices which have been excreted by the females. The infected root systems due to the nematode damage lose the ability to absorb enough water and nutrients for normal growth. Yellowing of foliage, leaf curling and dieback are consequences of insufficient root development and decayed young roots. [5]

According to E. Cohn, 4000 juveniles per gram of root are the damage threshold for slow decline disease in Israel. [6] In Cyprus, the growers need to apply nematicides when the nematode densities reach 5000 juveniles per 250 cm3 (15 cu in) in soil. [7] Treatments are recommended when 100 females per gram of root are observed in South Africa. [8] However, the age and vigor of the citrus trees, the nematode population densities in the soil, the aggressiveness of the nematodes, soil characteristics, and other environmental factors can influence the level of infestation by citrus nematode.

Management of the citrus nematode

Management practices consist of exclusion, preventive measures, and post-planting nematicide applications. All growers should avoid contaminated nursery rootstocks and use certified nematode-free soil and nematode-free rootstock (it is obligatory in some areas). Nematodes can easily be removed from seedlings by dipping the roots in 45 °C (113 °F) water for 25 minutes, which kills the nematodes but does not harm the plant. [4] For cultural practices, the container-grown citrus can be treated with steam and soil solarization. [9] Fumigation and nematicides are used to reduced initial population densities. Halogenated hydro-carbons (MBr,1-3-D and chloropicin) are the most effective. [10] Resistant rootstocks are available and this management strategy is the most useful to suppress nematode population density. Recently, the hybrid rootstock called Swingle citrumelo (Citrus paradisi x P. trifoliata) is highly resistant to the citrus nematode. [11]

In California, the Statewide Integrated Pest Management Program of the University of California suggests chemical control of nematodes with application dependent on population levels of nematodes. For low presence of nematodes, a pesticide application may not be economical, but at medium to high populations, nematicides can be prevent significant decline in fruit size and yield. The program considers less than 2000 juveniles per 500 g (18 oz) of soil from February to April and less than 4000 juveniles per 500 g of soil from May to July to be low population levels. For females, less than 100 individuals per 1 g (0.035 oz) from February to April and less than 300 per 1 g of soil from May to June are considered low levels. [12]

Related Research Articles

<i>Radopholus similis</i> Species of roundworm

Radopholus similis is a species of nematode known commonly as the burrowing nematode. It is a parasite of plants, and it is a pest of many agricultural crops. It is an especially important pest of bananas and citrus, and it can be found on coconut, avocado, coffee, sugarcane, other grasses, and ornamentals. It is a migratory endoparasite of roots, causing lesions that form cankers. Infected plants experience malnutrition.

<i>Meloidogyne incognita</i> Nematode worm, plant disease, many hosts

Meloidogyne incognita, also known as the southern root-nematode or cotton root-knot nematode is a plant-parasitic roundworm in the family Heteroderidae. This nematode is one of the four most common species worldwide and has numerous hosts. It typically incites large, usually irregular galls on roots as a result of parasitism.

Belonolaimus longicaudatus is a common parasite of grasses and other plant crops and products. It is the most destructive nematode pest of turf grass, and it also attacks a wide range of fruit, vegetable, and fiber crops such as citrus, cotton, ornamentals, and forage. The sting nematode is a migratory ectoparasite of roots. It is well established in many golf courses and presents a problem in turf management. The sting nematode is only present in very sandy soils. It cannot reproduce in heavier or clay soils.

<i>Rotylenchulus reniformis</i> Species of roundworm

Rotylenchulus reniformis, the reniform nematode, is a species of parasitic nematode of plants with a worldwide distribution in the tropical and subtropical regions.

<i>Meloidogyne arenaria</i> Species of roundworm

Meloidogyne arenaria is a species of plant pathogenic nematodes. This nematode is also known as the peanut root knot nematode. The word "Meloidogyne" is derived from two Greek words that mean "apple-shaped" and "female". The peanut root knot nematode, M. arenaria is one of the "major" Meloidogyne species because of its worldwide economic importance. M. arenaria is a predominant nematode species in the United States attacking peanut in Alabama, Florida, Georgia, and Texas. The most damaging nematode species for peanut in the USA is M. arenaria race 1 and losses can exceed 50% in severely infested fields. Among the several Meloidogyne species that have been characterized, M. arenaria is the most variable both morphologically and cytologically. In 1949, two races of this nematode had been identified, race 1 which reproduces on peanut and race 2 which cannot do so. However, in a recent study, three races were described. López-Pérez et al (2011) had also studied populations of M. arenaria race 2, which reproduces on tomato plants carrying the Mi gene and race 3, which reproduces on both resistant pepper and tomato.

<i>Meloidogyne javanica</i> Species of roundworm

Meloidogyne javanica is a species of plant-pathogenic nematodes. It is one of the tropical root-knot nematodes and a major agricultural pest in many countries. It has many hosts. Meloidogyne javanica reproduces by obligatory mitotic parthenogenesis (apomixis).

Pratylenchus brachyurus is a plant parasitic nematode.

<i>Pratylenchus penetrans</i> Species of roundworm

Pratylenchus penetrans is a species of nematode in the genus Pratylenchus, the lesion nematodes. It occurs in temperate regions worldwide, regions between the subtropics and the polar circles. It is an animal that inhabits the roots of a wide variety of plants and results in necrotic lesions on the roots. Symptoms of P. penetrans make it hard to distinguish from other plant pathogens; only an assay of soil can conclusively diagnose a nematode problem in the field. P. penetrans is physically very similar to other nematode species, but is characterized by its highly distinctive mouthpiece. P. penetrans uses its highly modified mouth organs to rupture the outer surface of subterranean plant root structures. It will then enter into the root interior and feed on the plant tissue inside. P. penetrans is considered to be a crop parasite and farmers will often treat their soil with various pesticides in an attempt to eliminate the damage caused by an infestation. In doing this, farmers will also eliminate many of the beneficial soil fauna, which will lead to an overall degradation of soil quality in the future. Alternative, more environmentally sustainable methods to control P. penetrans populations may be possible in certain regions.

Ditylenchus destructor is a plant pathogenic nematode commonly known as the potato rot nematode. Other common names include the iris nematode, the potato tuber eelworm and the potato tuber nematode. It is an endoparasitic, migratory nematode commonly found in areas such as the United States, Europe, central Asia and Southern Africa.

Helicotylenchus multicinctus is a plant pathogenic nematode that affects primarily bananas and plantains. Nematodes of the genus Helicotylenchus are spiral nematodes and feed on a large variety of plant species.

<i>Heterodera schachtii</i> Species of roundworm

Heterodera schachtii, the beet cyst eelworm or sugarbeet nematode, is a plant pathogenic nematode. It infects more than 200 different plants including economically important crops such as sugar beets, cabbage, broccoli, and radish. H. schachtii is found worldwide. Affected plants are marked by stunted growth, wilting, yellowing, decreased yields, and death. While there are many methods of control, crop rotation with non-susceptible plants is preferred.

<i>Paratylenchus hamatus</i> Species of roundworm

Paratylenchus hamatus, the fig pin nematode, is a species of migratory plant endoparasites, that causes lesions on plant roots resulting in symptoms of chlorosis, wilting and ultimately yield losses. They move and feed on different parts of host tissue throughout their life cycle in order to find enough susceptible host tissue to survive and reproduce. A wide range of host plant species are susceptible to the fig pin nematode, including many valuable fruit and vegetable crops such as figs, carrots and celery. They are also commonly found associated with woody perennials in California. P. hamatus inhabits soils in both Europe and North America, and was originally isolated from fig in central California in 1950.

Xiphinema americanum, the American dagger nematode, is a species of plant pathogenic nematodes. It is one of many species that belongs to the genus Xiphinema. It was first described by N. A. Cobb in 1913, who found it on both sides of the United States on the roots of grass, corn, and citrus trees. Not only is Xiphinema americanum known to vector plant viruses, but also X. americanum has been referred to as "the most destructive plant parasitic nematode in America", and one of the four major nematode pests in the Southeastern United States.

Xiphinema diversicaudatum is an amphimictic ectoparasitic nematode species. This species has a characteristically long stylet capable of penetrating into a host's vascular tissue. They have a wide host range with some of the extensively studied ones being strawberry, hops and raspberry, due to their economic importance. The direct root damage caused through penetration near the root tip and formation of galls is a secondary concern when compared with the damage caused by vectoring the Arabis mosaic virus. The virus attaches to the interior cuticle lining and can be transferred from infected to uninfected root tissue as the nematode feeds and sheds. Management of this particular nematode relies on nematicides such as 1,3-Dichloropropene (Telone) at 40 gpa.or methyl bromide at 1000 lb/ac to control to 28 in deep.

Xiphinema index, the California dagger nematode, is a species of plant-parasitic nematodes.

Mesocriconema xenoplax is a species of plant parasitic nematodes. Nematodes of this particular species are collectively called ring nematodes.

There are many plant-parasitic species in the root-knot nematode genus (Meloidogyne) that attack coffee such as M. incognita, M. arenaria, M. exigua, M. javanica and M. coffeicola. Study has already shown interspecific variability coffee, in which show how this species can be adapting to new hosts and environments.

Heterodera sacchari, the sugarcane cyst nematode, mitotic parthenogenic sedentary endoparasitic nematode. This plant-parasitic nematode infects the roots of sugarcane, and the female nematode eventually becomes a thick-walled cyst filled with eggs. Aboveground symptoms are species specific and are similar to those caused by other Heterodera species. Symptoms include: stunted and chlorotic plants, and reduced root growth. Seedlings may be killed in heavily infested soils.

Strawberry foliar nematode, or strawberry crimp nematode, is a disease caused by Aphelenchoides fragariae, a plant pathogenic nematode. It is common in strawberries and ornamental plants and can greatly affect plant yield and appearance, resulting in a loss of millions of dollars of revenue. Symptoms used to diagnose the disease are angular, water soaked lesions and necrotic blotches. Aphelenchoides fragariae is the nematode pathogen that causes the disease. Its biological cycle includes four life stages, three of which are juvenile. The nematode can undergo multiple life cycles in one growing season when favorable conditions are present. The crowns, runners, foliage, and new buds of the plant via stylet penetration or through the stomata can be infected. The best management practices for this disease are sanitation, prevention of induction of the pathogen to the environment, and planting clean seed or starter plants.

Pratylenchus alleni is a migratory endoparasitic nematode, living inside of plant roots and feeding on parenchyma cells in the root cortex. P. alleni is an obligate biotroph, meaning it must have a living host in order to survive. Due to their incredibly broad host range, Pratylenchus species fall third in total economic impact, finishing just behind cyst nematodes and root knot nematodes (Meloidogyne). In Canada, it was isolated for the first time in 2011 in a soybean field.

References

  1. Verdejo-Lucas, S.; McKenry, M. V. (2004). "Management of the Citrus Nematode, Tylenchulus semipenetrans". Journal of Nematology. 36 (4): 424–432. ISSN   0022-300X. PMC   2620797 . PMID   19262822.
  2. 1 2 Ferris, H. (July 19, 2022). "Tylenchulus semipenetrans". Nemaplex. University of California, Davis. Archived from the original on April 24, 2022. Retrieved February 16, 2023.
  3. Sekora, N.S.; Crow, W. (2012). "Citrus nematode Tylenchulus semipenetrans (Cobb, 1913)". Featured Creatures. University of Florida. Archived from the original on February 16, 2023. Retrieved February 16, 2023.
  4. 1 2 Verdejo-Lucas, S.; Kaplan, D. T. (2002). "The citrus nematode: Tylenchulus semipenetrans". In Starr, J. L.; Cook, R.; Bridge, J. (eds.). Plant resistance to parasitic nematodes. Wallingford, United Kingdom: CABI Publishing. pp. 207–219. doi:10.1079/9780851994666.0207. ISBN   978-0-85199-466-6.
  5. Duncan, L. W. (2005). "Nematode parasites of citrus". In Luc, M.; Sikora, R. A.; Bridge, J. (eds.). Plant parasitic nematodes in subtropical and tropical agriculture (2 ed.). Wallingford, United Kingdom: CABI Publishing. pp. 437–466. doi:10.1079/9780851997278.0437. ISBN   9781845931445.
  6. Cohn, E. (1969). "The citrus nematode, Tylenchulus semipenetrans Cobb, as a pest of citrus in Israel". Proceedings of the First International Citrus Symposium. 2: 1013–1017.
  7. Philis, I. (1989). "Yield loss assessment caused by the citrus nematode Tylenchulus semipenetrans on Valencia oranges Cyprus". Nematologia Mediterranea. 17 (1): 5–6.
  8. Le Roux, H.F.; Pretorius, M.C.; Husiman, L. (2000). "Citrus Nematode IPM in Southern Africa". Proceedings of the International Society of Citriculture. 2: 823–827.
  9. Stapleton, J.J.; Elmore, C.L.; DeVay, J.E. (2000). "Solarization and biofumigation help disinfest soil". California Agriculture. 54 (6): 42–45. doi: 10.3733/ca.v054n06p42 .
  10. Sorribas, F.J.; Verdejo-Lucas, S.; Galeano, M.; Pastor, J.; Ornat, C. (2003). "Effect of 1,3 dichloropropene and rootstocks alone and in combination on Tylenchulus semipenetrans and citrus tree growth in a replant management program". Nematropica. 33 (2): 147–156.
  11. Kaplan, D.T.; O'Bannon, J.H. (1981). "Evaluation and Nature of Citrus Nematode Resistance in Swingle Citrumelo". Proceedings of the Florida State Horticultural Society. 94: 33–36.
  12. Becker, J.O.; Westerdahl, B.B. (August 2018). "Nematodes". Agriculture: Citrus Pest Management Guidelines. University of California Integrated Pest Management Program. Archived from the original on December 3, 2022. Retrieved February 16, 2023.