UDP-N,N'-diacetylbacillosamine 2-epimerase (hydrolysing)

Last updated
UDP-N,N'-diacetylbacillosamine 2-epimerase (hydrolysing)
Identifiers
EC no. 3.2.1.184
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

UDP-N,N'-diacetylbacillosamine 2-epimerase (hydrolysing) (EC 3.2.1.184, UDP-Bac2Ac4Ac 2-epimerase, NeuC) is an enzyme with systematic name UDP-N,N'-diacetylbacillosamine hydrolase (2-epimerising). [1] [2] This enzyme catalyses the following chemical reaction

UDP-N,N'-diacetylbacillosamine + H2O UDP + 2,4-diacetamido-2,4,6-trideoxy-D-mannopyranose

This enzyme requires Mg2+. It is involved in biosynthesis of legionaminic acid.

Related Research Articles

<i>N</i>-Acetylmannosamine Chemical compound

N-Acetylmannosamine is a hexosamine monosaccharide. It is a neutral, stable naturally occurring compound. N-Acetylmannosamine is also known as N-Acetyl-D-mannosamine monohydrate,, N-Acetyl-D-mannosamine which can be abbreviated to ManNAc or, less commonly, NAM). ManNAc is the first committed biological precursor of N-acetylneuraminic acid. Sialic acids are the negatively charged, terminal monosaccharides of carbohydrate chains that are attached to glycoproteins and glycolipids (glycans).

Epimerases and racemases are isomerase enzymes that catalyze the inversion of stereochemistry in biological molecules. Racemases catalyze the stereochemical inversion around the asymmetric carbon atom in a substrate having only one center of asymmetry. Epimerases catalyze the stereochemical inversion of the configuration about an asymmetric carbon atom in a substrate having more than one center of asymmetry, thus interconverting epimers.

<span class="mw-page-title-main">Phosphatidylglycerol</span> Lipid

Phosphatidylglycerol is a glycerophospholipid found in pulmonary surfactant and in the plasma membrane where it directly activates lipid-gated ion channels.

<span class="mw-page-title-main">UDP-glucose 4-epimerase</span> Class of enzymes

The enzyme UDP-glucose 4-epimerase, also known as UDP-galactose 4-epimerase or GALE, is a homodimeric epimerase found in bacterial, fungal, plant, and mammalian cells. This enzyme performs the final step in the Leloir pathway of galactose metabolism, catalyzing the reversible conversion of UDP-galactose to UDP-glucose. GALE tightly binds nicotinamide adenine dinucleotide (NAD+), a co-factor required for catalytic activity.

In enzymology, an UDP-glucuronate 5'-epimerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UDP-N-acetylglucosamine 2-epimerase</span> Class of enzymes

In enzymology, an UDP-N-acetylglucosamine 2-epimerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UDP-N-acetylglucosamine 4-epimerase</span> Class of enzymes

In enzymology, an UDP-N-acetylglucosamine 4-epimerase is an enzyme that catalyzes the chemical reaction

Nucleotide sugars are the activated forms of monosaccharides. Nucleotide sugars act as glycosyl donors in glycosylation reactions. Those reactions are catalyzed by a group of enzymes called glycosyltransferases.

In enzymology, a beta-galactoside alpha-2,6-sialyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">GNE (gene)</span> Protein-coding gene in humans

Bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is an enzyme that in humans is encoded by the GNE gene.

UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase (EC 1.1.1.335, WlbA, WbpB) is an enzyme with systematic name UDP-N-acetyl-2-amino-2-deoxy-alpha-D-glucuronate:NAD+ 3-oxidoreductase. This enzyme catalyses the following chemical reaction:

UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine N-acetyltransferase is an enzyme with systematic name acetyl-CoA:UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine N-acetyltransferase. This enzyme catalyses the following chemical reaction

N,N'-diacetyllegionaminate synthase (EC 2.5.1.101, neuB (gene), legI (gene)) is an enzyme with systematic name phosphoenolpyruvate:2,4-diacetamido-2,4,6-trideoxy-alpha-D-mannopyranose 1-(2-carboxy-2-oxoethyl)transferase. This enzyme catalyses the following chemical reaction

UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine transaminase is an enzyme with systematic name UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

CMP-N,N'-diacetyllegionaminic acid synthase is an enzyme with systematic name CTP:N,N'-diacetyllegionaminate cytidylyltransferase. This enzyme catalyses the following chemical reaction

UDP-N-acetylglucosamine 2-epimerase (hydrolysing) (EC 3.2.1.183, UDP-N-acetylglucosamine 2-epimerase, GNE (gene), siaA (gene), neuC (gene)) is an enzyme with systematic name UDP-N-acetyl-alpha-D-glucosamine hydrolase (2-epimerising). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Epimerox</span> Chemical compound

Epimerox is an experimental broad-spectrum antibiotic compound being developed by scientists at the Rockefeller University and Astex Pharmaceuticals. It is a small molecule inhibitor compound that blocks the activity of the enzyme UDP-N-acetylglucosamine 2-epimerase, an epimerase enzyme that is called 2-epimerase for short.

UDP-2,4-diacetamido-2,4,6-trideoxy-beta-L-altropyranose hydrolase (EC 3.6.1.57, PseG, UDP-6-deoxy-AltdiNAc hydrolase, Cj1312) is an enzyme with systematic name UDP-2,4-bis(acetamido)-2,4,6-trideoxy-beta-L-altropyranose hydrolase. This enzyme catalyses the following chemical reaction

UDP-N-acetylglucosamine 4,6-dehydratase (configuration-retaining) (EC 4.2.1.135, PglF) is an enzyme with systematic name UDP-N-acetyl-α-Dglucosamine hydro-lyase (configuration-retaining; UDP-2-acetamido-2,6-dideoxy-α-Dxylo-hex-4-ulose-forming). This enzyme catalyses the following chemical reaction

UDP-2,3-diacetamido-2,3-dideoxyglucuronic acid 2-epimerase is an enzyme with systematic name 2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronate 2-epimerase. This enzyme catalyses the following chemical reaction

References

  1. Glaze PA, Watson DC, Young NM, Tanner ME (March 2008). "Biosynthesis of CMP-N,N'-diacetyllegionaminic acid from UDP-N,N'-diacetylbacillosamine in Legionella pneumophila". Biochemistry. 47 (10): 3272–82. doi:10.1021/bi702364s. PMID   18275154.
  2. Schoenhofen IC, Vinogradov E, Whitfield DM, Brisson JR, Logan SM (July 2009). "The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors". Glycobiology. 19 (7): 715–25. doi: 10.1093/glycob/cwp039 . PMID   19282391.