Urban climatology

Last updated

Urban climatology is the study of urban climate. It is a branch of climatology that concerns interactions between urban areas and the atmosphere, the effects they have on one another, and the varying spatial and temporal scales at which these processes (and responses) occur.

Contents

History

Luke Howard is considered to have established urban climatology with his book The Climate of London, which contained continuous daily observations from 1801 to 1841 of wind direction, atmospheric pressure, maximum temperature, and rainfall. [1]

Urban climatology came about as a methodology for studying the results of industrialization and urbanization. Constructing cities changes the physical environment and alters energy, moisture, and motion regimes near the surface. Most of these alterations can be traced to causal factors such as air pollution; anthropogenic sources of heat; surface waterproofing; thermal properties of the surface materials; and morphology of the surface and its specific three-dimensional geometry—building spacing, height, orientation, vegetative layering, and the overall dimensions and geography of these elements. [2] Other factors are relief, proximity to water bodies, size of the city, population density, and land-use distributions. [3]

Influential factors

Several factors influence the urban climate, including city size, the morphology of the city, land-use configuration, and the geographic setting (such as relief, elevation, and regional climate). [4] Some of the differences between urban and rural climates include air quality, wind patterns, and changes in rainfall patterns, but one of the most studied is the urban heat island (UHI) effect. [5]

Temperature and urban heat island effect

Urban environments, and slightly downwind, are typically warmer than their surroundings, as documented over a century ago by Howard. [6] Urban areas are islands or spots on the broader scale compared with more rural surrounding land. The spatial distribution of temperatures occurs in tandem with temporal changes, which are both causally related to anthropogenic sources.

The urban environment has two atmosphere layers, besides the planetary boundary layer (PBL) outside and extending well above the city: (1) The urban boundary layer is due to the spatially integrated heat and moisture exchanges between the city and its overlying air. (2) The surface of the city corresponds to the level of the urban canopy layer. Fluxes across this plane comprise those from individual units, such as roofs, canyon tops, trees, lawns, and roads, integrated over larger land-use divisions (for example, suburbs). The urban heat island effect has been a major focus of urban climatological studies, and in general the effect the urban environment has on local meteorological conditions. These are sometimes measured by micronets or mesonets, as well as by Earth observation satellites.

Pollution

The field also includes the topics of air quality, radiation fluxes, microclimates and even issues traditionally associated with architectural design and engineering, such as wind engineering. Causes and effects of pollution as understood through urban climatology are becoming more important for urban planning. [7]

Precipitation

Changes in winds and convection patterns over and around cities impacts precipitation. Contributing factors are believed to be urban heat island, heightened surface roughness, and increased aerosol concentration. [8]

Climate change

Urban climatology is strongly linked to research surrounding global warming. As centers for socioeconomic activities, cities produce large amounts of greenhouse gases (GHGs), most notably CO2 as a consequence of human activities such as transport, development, waste related to heating and cooling requirements etc.

Globally, cities are expected to grow into the 21st century (and beyond) [9] - as they grow and develop the landscapes in which they inhabit will change so too will the atmosphere resting above them, increasing emissions of GHGs thus contributing to the global greenhouse effect.

Finally, many cities are vulnerable to the projected consequences of climate change (sea level rise, changes in temperature, precipitation, storm frequency) as most develop on or near coastlines, nearly all produce distinct urban heat islands and atmospheric pollution: as areas in which there is concentrated human habitation these effects potentially will have the largest and most dramatic impact (e.g. the 2003 European heat wave that especially deadly in France) and thus are a major focus for urban climatology. [10]

Spatial planning and public health

Urban climatology impacts decision-making for municipal planning and policy in regards to pollution, [11] extreme heat events, and stormwater modeling. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Meteorology</span> Interdisciplinary scientific study of the atmosphere focusing on weather forecasting

Meteorology is a branch of the atmospheric sciences with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not begin until the 18th century. The 19th century saw modest progress in the field after weather observation networks were formed across broad regions. Prior attempts at prediction of weather depended on historical data. It was not until after the elucidation of the laws of physics, and more particularly in the latter half of the 20th century, the development of the computer that significant breakthroughs in weather forecasting were achieved. An important branch of weather forecasting is marine weather forecasting as it relates to maritime and coastal safety, in which weather effects also include atmospheric interactions with large bodies of water.

<span class="mw-page-title-main">Urban heat island</span> Urban area that is significantly warmer than its surrounding rural areas

Urban areas usually experience the urban heat island (UHI) effect, that is, they are significantly warmer than surrounding rural areas. The temperature difference is usually larger at night than during the day, and is most apparent when winds are weak, under block conditions, noticeably during the summer and winter. The main cause of the UHI effect is from the modification of land surfaces while waste heat generated by energy usage is a secondary contributor. A study has shown that heat islands can be affected by proximity to different types of land cover, so that proximity to barren land causes urban land to become hotter and proximity to vegetation makes it cooler. As a population center grows, it tends to expand its area and increase its average temperature. The term heat island is also used; the term can be used to refer to any area that is relatively hotter than the surrounding, but generally refers to human-disturbed areas. Urban areas take up about 0.5% of the Earth's land surface but occupy more than half of the world's population.

<span class="mw-page-title-main">Climatology</span> Scientific study of climate, defined as weather conditions averaged over a period of time

Climatology or climate science is the scientific study of Earth's climate, typically defined as weather conditions averaged over a period of at least 30 years. Climate concerns the atmospheric condition during an extended to indefinite period of time; weather is the condition of the atmosphere during a relative brief period of time. The main topics of research are the study of climate variability, mechanisms of climate changes and modern climate change. This topic of study is regarded as part of the atmospheric sciences and a subdivision of physical geography, which is one of the Earth sciences. Climatology includes some aspects of oceanography and biogeochemistry.

<span class="mw-page-title-main">Atmospheric science</span> Study of the atmosphere, its processes, and its interactions with other systems

Atmospheric science is the study of the Earth's atmosphere and its various inner-working physical processes. Meteorology includes atmospheric chemistry and atmospheric physics with a major focus on weather forecasting. Climatology is the study of atmospheric changes that define average climates and their change over time climate variability. Aeronomy is the study of the upper layers of the atmosphere, where dissociation and ionization are important. Atmospheric science has been extended to the field of planetary science and the study of the atmospheres of the planets and natural satellites of the Solar System.

<span class="mw-page-title-main">Atmosphere</span> Layer of gases surrounding an astronomical body held by gravity

An atmosphere is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosphere is the outer region of a star, which includes the layers above the opaque photosphere; stars of low temperature might have outer atmospheres containing compound molecules.

<span class="mw-page-title-main">Urban ecology</span> Scientific study of living organisms

Urban ecology is the scientific study of the relation of living organisms with each other and their surroundings in an urban environment. An urban environment refers to environments dominated by high-density residential and commercial buildings, paved surfaces, and other urban-related factors that create a unique landscape. The goal of urban ecology is to achieve a balance between human culture and the natural environment.

<span class="mw-page-title-main">Natural environment</span> Living and non-living things on Earth

The natural environment or natural world encompasses all living and non-living things occurring naturally, meaning in this case not artificial. The term is most often applied to Earth or some parts of Earth. This environment encompasses the interaction of all living species, climate, weather and natural resources that affect human survival and economic activity. The concept of the natural environment can be distinguished as components:

This glossary of climate change is a list of definitions of terms and concepts relevant to climate change, global warming, and related topics.

<span class="mw-page-title-main">Planetary boundary layer</span> Lowest part of the atmosphere directly influenced by contact with the planetary surface

In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. On Earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, and moisture display rapid fluctuations (turbulence) and vertical mixing is strong. Above the PBL is the "free atmosphere", where the wind is approximately geostrophic, while within the PBL the wind is affected by surface drag and turns across the isobars.

<span class="mw-page-title-main">Numerical weather prediction</span> Weather prediction using mathematical models of the atmosphere and oceans

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

The climate in urban areas differs from that in neighboring rural areas, as a result of urban development. Urbanization greatly changes the form of the landscape, and also produces changes in an area's air. The study of urban climate is urban climatology.

<span class="mw-page-title-main">Urban canyon</span> Street lined by very tall buildings on both sides, typically in large cities

An urban canyon is a place where the street is flanked by buildings on both sides creating a canyon-like environment, evolved etymologically from the Canyon of Heroes in Manhattan. Such human-built canyons are made when streets separate dense blocks of structures, especially skyscrapers. Other examples include the Magnificent Mile in Chicago, Los Angeles' Wilshire Boulevard corridor, Toronto's Financial District, and Hong Kong's Kowloon and Central districts.

<span class="mw-page-title-main">Sustainable drainage system</span>

Sustainable drainage systems are a collection of water management practices that aim to align modern drainage systems with natural water processes and are part of a larger green infrastructure strategy. SuDS efforts make urban drainage systems more compatible with components of the natural water cycle such as storm surge overflows, soil percolation, and bio-filtration. These efforts hope to mitigate the effect human development has had or may have on the natural water cycle, particularly surface runoff and water pollution trends.

Air stagnation is a meteorological condition that occurs when there is a lack of atmospheric movement, leading to the accumulation of pollutants and particles that can decline the air quality in a particular region. This condition typically correlates with air pollution and poor air quality due to the possible health risks it can cause to humans and the environment. Due to light winds and lack of precipitation, pollutants cannot be cleared from the air, either gaseous or particulate.

The following outline is provided as an overview of and topical guide to air pollution dispersion: In environmental science, air pollution dispersion is the distribution of air pollution into the atmosphere. Air pollution is the introduction of particulates, biological molecules, or other harmful materials into Earth's atmosphere, causing disease, death to humans, damage to other living organisms such as food crops, and the natural or built environment. Air pollution may come from anthropogenic or natural sources. Dispersion refers to what happens to the pollution during and after its introduction; understanding this may help in identifying and controlling it.

<span class="mw-page-title-main">Freshwater biology</span> The scientific study of freshwater ecosystems and biology

Freshwater biology is the scientific biological study of freshwater ecosystems and is a branch of limnology. This field seeks to understand the relationships between living organisms in their physical environment. These physical environments may include rivers, lakes, streams, ponds, lakes, reservoirs, or wetlands. Knowledge from this discipline is also widely used in industrial processes to make use of biological processes involved with sewage treatment and water purification. Water presence and flow is an essential aspect to species distribution and influences when and where species interact in freshwater environments.

An urban thermal plume describes rising air in the lower altitudes of the Earth's atmosphere caused by urban areas being warmer than surrounding areas. Over the past thirty years there has been increasing interest in what have been called urban heat islands (UHI), but it is only since 2007 that thought has been given to the rising columns of warm air, or ‘thermal plumes’ that they produce. Common on-shore breezes at the seaside on a warm day, and off-shore breezes at night are caused by the land heating up faster on a sunny day and cooling faster after sunset, respectively. Thermals, or warm airs, that rise from the land and sea affect the local microscale meteorology; and perhaps at times the mesometeorology. Urban thermal plumes have as powerful although less localized an effect.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

Christine Susan Betham Grimmond is a New Zealand scientist and professor of urban meteorology at the University of Reading. She currently holds the post of Met Office Joint Chair. Grimmond is a pioneer of the fields of urban meteorology and micrometerology, which deal with the atmospheric boundary layer.

References

  1. Mills, G (2007). "Luke Howard and The Climate of London". Weather. 63 (6): 153–157. Bibcode:2008Wthr...63..153M. doi: 10.1002/wea.195 . S2CID   54843237.
  2. Arnfield, A. John. "Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island." International Journal of Climatology 23.1 (2003): 1-26. Web. .
  3. Oke, T.R. (1988). "Street design and urban canopy layer climate". Energy and Buildings. 11 (1–3): 103–113. doi:10.1016/0378-7788(88)90026-6.
  4. Oke, T.R. 1968: Toward a more rational understanding of the urban heat island. McGill Climate Bulletin. 20pp
  5. Grimmond, CSB. 2006: Prof Sue Grimmond answers questions on urban climatology
  6. Mills, G. 2009: Luke Howard, Tim Oke and the Study of Urban Climates IAUC newsletter
  7. Romero, H; Ihl, M; Rivera, A; Zalazar, P; Azocar, P (1999). "Rapid urban growth, land-use changes and air pollution in Santiago, Chile". Atmospheric Environment. 33 (24–25): 4039–4047. Bibcode:1999AtmEn..33.4039R. doi:10.1016/S1352-2310(99)00145-4.
  8. Han, J. et al. 2014: Urban impacts on precipitation; Asia-Pacific Journal of the Atmospheric Sciences, Volume 50, Issue 1, pp 17-30
  9. United Nations. (2014). World urbanization prospects, the 2014 revision: Highlights
  10. Alexander, Mathews et al
  11. Hebbert, M.; Mackillop, F. (2013). "Urban Climatology Applied to Urban Planning: A Postwar Knowledge Circulation Failure". International Journal of Urban and Regional Research. 37 (5): 1542–1558. doi:10.1111/1468-2427.12046. hdl: 10.1111/1468-2427.12046 .
  12. Yen, Ben Chie. "Urban Stormwater Modeling and Simulation." Bulletin of the American Meteorological Society Apr. 1995: 564+. Academic OneFile. Web. 11 Nov. 2014.