Vaccine-naive

Last updated
The time-course of an immune response begins with the initial pathogen encounter, (or initial vaccination) and leads to the formation and maintenance of active immunological memory. Immune response2.svg
The time-course of an immune response begins with the initial pathogen encounter, (or initial vaccination) and leads to the formation and maintenance of active immunological memory.

Vaccine-naive is a lack of immunity, or immunologic memory, to a disease because the person has not been vaccinated. There are a variety of reasons why a person may not have received a vaccination, including contraindications due to preexisting medical conditions, lack of resources, previous vaccination failure, religious beliefs, personal beliefs, fear of side-effects, phobias to needles, lack of information, vaccine shortages, physician knowledge and beliefs, social pressure, and natural resistance. [1] [2] [3] [4]

Contents

Effect on herd immunity

Communicable diseases, such as measles and influenza, are more readily spread in vaccine-naive populations, causing frequent outbreaks. Vaccine-naive persons threaten what epidemiologists call herd immunity. [5] [6] [7] This is because vaccinations provide not just protection to those who receive them, but also provide indirect protection to those who remain susceptible because of the reduced prevalence of infectious diseases. Fewer individuals available to transmit the disease reduce the incidence of it, creating herd immunity. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Vaccination</span> Administration of a vaccine to protect against disease

Vaccination is the administration of a vaccine to help the immune system develop immunity from a disease. Vaccines contain a microorganism or virus in a weakened, live or killed state, or proteins or toxins from the organism. In stimulating the body's adaptive immunity, they help prevent sickness from an infectious disease. When a sufficiently large percentage of a population has been vaccinated, herd immunity results. Herd immunity protects those who may be immunocompromised and cannot get a vaccine because even a weakened version would harm them. The effectiveness of vaccination has been widely studied and verified. Vaccination is the most effective method of preventing infectious diseases; widespread immunity due to vaccination is largely responsible for the worldwide eradication of smallpox and the elimination of diseases such as polio and tetanus from much of the world. However, some diseases, such as measles outbreaks in America, have seen rising cases due to relatively low vaccination rates in the 2010s – attributed, in part, to vaccine hesitancy. According to the World Health Organization, vaccination prevents 3.5–5 million deaths per year.

<span class="mw-page-title-main">Vaccine</span> Pathogen-derived preparation that provides acquired immunity to an infectious disease

A vaccine is a biological preparation that provides active acquired immunity to a particular infectious or malignant disease. The safety and effectiveness of vaccines has been widely studied and verified. A vaccine typically contains an agent that resembles a disease-causing microorganism and is often made from weakened or killed forms of the microbe, its toxins, or one of its surface proteins. The agent stimulates the body's immune system to recognize the agent as a threat, destroy it, and recognize further and destroy any of the microorganisms associated with that agent that it may encounter in the future.

<span class="mw-page-title-main">Herd immunity</span> Concept in epidemiology

Herd immunity is a form of indirect protection that applies only to contagious diseases. It occurs when a sufficient percentage of a population has become immune to an infection, whether through previous infections or vaccination, thereby reducing the likelihood of infection for individuals who lack immunity.

<span class="mw-page-title-main">Immunization</span> Process by which an individuals immune system becomes fortified against an infectious agent

Immunization, or immunisation, is the process by which an individual's immune system becomes fortified against an infectious agent.

In biology, immunity is the state of being insusceptible or resistant to a noxious agent or process, especially a pathogen or infectious disease. Immunity may occur naturally or be produced by prior exposure or immunization.

<span class="mw-page-title-main">DPT vaccine</span> Combination vaccine

The DPT vaccine or DTP vaccine is a class of combination vaccines against three infectious diseases in humans: diphtheria, pertussis, and tetanus. The vaccine components include diphtheria and tetanus toxoids and either killed whole cells of the bacterium that causes pertussis or pertussis antigens. The term toxoid refers to vaccines which use an inactivated toxin produced by the pathogen which they are targeted against to generate an immune response. In this way, the toxoid vaccine generates an immune response which is targeted against the toxin which is produced by the pathogen and causes disease, rather than a vaccine which is targeted against the pathogen itself. The whole cells or antigens will be depicted as either "DTwP" or "DTaP", where the lower-case "w" indicates whole-cell inactivated pertussis and the lower-case "a" stands for "acellular". In comparison to alternative vaccine types, such as live attenuated vaccines, the DTP vaccine does not contain any live pathogen, but rather uses inactivated toxoid to generate an immune response; therefore, there is not a risk of use in populations that are immune compromised since there is not any known risk of causing the disease itself. As a result, the DTP vaccine is considered a safe vaccine to use in anyone and it generates a much more targeted immune response specific for the pathogen of interest.

<span class="mw-page-title-main">Influenza vaccine</span> Vaccine against influenza

Influenza vaccines, colloquially known as flu shots, are vaccines that protect against infection by influenza viruses. New versions of the vaccines are developed twice a year, as the influenza virus rapidly changes. While their effectiveness varies from year to year, most provide modest to high protection against influenza. Vaccination against influenza began in the 1930s, with large-scale availability in the United States beginning in 1945.

<span class="mw-page-title-main">Vaccine hesitancy</span> Reluctance or refusal to be vaccinated or have ones children vaccinated

Vaccine hesitancy is a delay in acceptance, or refusal, of vaccines despite the availability of vaccine services and supporting evidence. The term covers refusals to vaccinate, delaying vaccines, accepting vaccines but remaining uncertain about their use, or using certain vaccines but not others. The scientific consensus that vaccines are generally safe and effective is overwhelming. Vaccine hesitancy often results in disease outbreaks and deaths from vaccine-preventable diseases. Therefore, the World Health Organization characterizes vaccine hesitancy as one of the top ten global health threats.

The MMRV vaccine combines the attenuated virus MMR vaccine with the addition of the varicella (chickenpox) vaccine. The MMRV vaccine is typically given to children between one and two years of age.

A breakthrough infection is a case of illness in which a vaccinated individual becomes infected with the illness, because the vaccine has failed to provide complete immunity against the pathogen. Breakthrough infections have been identified in individuals immunized against a variety of diseases including mumps, varicella (Chickenpox), influenza, and COVID-19. The characteristics of the breakthrough infection are dependent on the virus itself. Often, infection of the vaccinated individual results in milder symptoms and shorter duration than if the infection were contracted naturally.

<span class="mw-page-title-main">Varicella vaccine</span> Vaccine to prevent chickenpox

Varicella vaccine, also known as chickenpox vaccine, is a vaccine that protects against chickenpox. One dose of vaccine prevents 95% of moderate disease and 100% of severe disease. Two doses of vaccine are more effective than one. If given to those who are not immune within five days of exposure to chickenpox it prevents most cases of disease. Vaccinating a large portion of the population also protects those who are not vaccinated. It is given by injection just under the skin. Another vaccine, known as zoster vaccine, is used to prevent diseases caused by the same virus – the varicella zoster virus.

Immunization during pregnancy is the administration of a vaccine to a pregnant individual. This may be done either to protect the individual from disease or to induce an antibody response, such that the antibodies cross the placenta and provide passive immunity to the infant after birth. In many countries, including the US, Canada, UK, Australia and New Zealand, vaccination against influenza, COVID-19 and whooping cough is routinely offered during pregnancy.

An attenuated vaccine is a vaccine created by reducing the virulence of a pathogen, but still keeping it viable. Attenuation takes an infectious agent and alters it so that it becomes harmless or less virulent. These vaccines contrast to those produced by "killing" the pathogen.

<span class="mw-page-title-main">Hepatitis B vaccine</span> Vaccine against hepatitis B

Hepatitis B vaccine is a vaccine that prevents hepatitis B. The first dose is recommended within 24 hours of birth with either two or three more doses given after that. This includes those with poor immune function such as from HIV/AIDS and those born premature. It is also recommended that health-care workers be vaccinated. In healthy people, routine immunization results in more than 95% of people being protected.

NmVac4-A/C/Y/W-135 is the commercial name of the polysaccharide vaccine against the bacterium that causes meningococcal meningitis. The product, by JN-International Medical Corporation, is designed and formulated to be used in developing countries for protecting populations during meningitis disease epidemics.

<span class="mw-page-title-main">Cocooning (immunization)</span> Vaccination strategy

Cocooning, also known as the Cocoon Strategy, is a vaccination strategy to protect infants and other vulnerable individuals from infectious diseases by vaccinating those in close contact with them. If the people most likely to transmit an infection are immune, their immunity creates a "cocoon" of protection around the newborn.

<span class="mw-page-title-main">Tetanus vaccine</span> Vaccines used to prevent tetanus

Tetanus vaccine, also known as tetanus toxoid (TT), is a toxoid vaccine used to prevent tetanus. During childhood, five doses are recommended, with a sixth given during adolescence.

Vaccinia immune globulin (VIG) is made from the pooled blood of individuals who have been inoculated with the smallpox vaccine. The antibodies these individuals developed in response to the smallpox vaccine are removed and purified. This results in VIG. It can be administered intravenously. It is used to treat individuals who have developed progressive vaccinia after smallpox vaccination.

<span class="mw-page-title-main">Targeted immunization strategies</span>

Targeted immunization strategies are approaches designed to increase the immunization level of populations and decrease the chances of epidemic outbreaks. Though often in regards to use in healthcare practices and the administration of vaccines to prevent biological epidemic outbreaks, these strategies refer in general to immunization schemes in complex networks, biological, social or artificial in nature. Identification of at-risk groups and individuals with higher odds of spreading the disease often plays an important role in these strategies, since targeted immunization in high-risk groups is necessary for effective eradication efforts and has a higher return on investment than immunizing larger but lower-risk groups.

<span class="mw-page-title-main">Vaccination policy of the United States</span> Overview of the vaccination policy in the United States of America

Vaccination policy of the United States is the subset of U.S. federal health policy that deals with immunization against infectious disease. It is decided at various levels of the government, including the individual states. This policy has been developed over the approximately two centuries since the invention of vaccination with the purpose of eradicating disease from the U.S. population, or creating a herd immunity. Policies intended to encourage vaccination impact numerous areas of law, including regulation of vaccine safety, funding of vaccination programs, vaccine mandates, adverse event reporting requirements, and compensation for injuries asserted to be associated with vaccination.

References

  1. Menson, E. N.; Mellado, M. J.; Bamford, A.; Castelli, G.; Duiculescu, D.; Marczyńska, M.; Navarro, M. L.; Scherpbier, H. J.; Heath, P. T.; Paediatric European Network for Treatment of AIDS (PENTA) Vaccines Group; Penta Steering, C.; Children's HIV Association (CHIVA) (2012). "Guidance on vaccination of HIV-infected children in Europe". HIV Medicine. 13 (6): 333–336, e1–336. doi:10.1111/j.1468-1293.2011.00982.x. PMID   22296225. S2CID   39449456.
  2. "CDC Smallpox | Smallpox (Vaccinia) Vaccine Contraindications (Info for Clinicians)". Bt.cdc.gov. Retrieved 2013-07-15.
  3. Wallace, H. Shortages require practices to take extra measures to keep patients up-to-date on vaccines: Calling the shots. AAP News 2003; 23:54–56
  4. Turner, N.; Grant, C.; Goodyear-Smith, F.; Petousis-Harris, H. (2009). "Seize the moments: missed opportunities to immunize at the family practice level". Family Practice. 26 (4): 275–8. doi: 10.1093/fampra/cmp028 . PMID   19477931.
  5. Kiera Butler (2013-05-27). "The Real Reason Kids Aren't Getting Vaccines". Mother Jones. Retrieved 2013-07-15.
  6. "Prevention and Control of Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2011". Cdc.gov. Retrieved 2013-07-15.
  7. West, D. J.; Calandra, G. B. (1996). "Vaccine induced immunologic memory for hepatitis B surface antigen: implications for policy on booster vaccination". Vaccine. 14 (11): 1019–27. doi:10.1016/0264-410X(96)00062-X. PMID   8879096.
  8. Garnett, G. P. (2005). "Role of Herd Immunity in Determining the Effect of Vaccines against Sexually Transmitted Disease". The Journal of Infectious Diseases. 191: S97–106. doi: 10.1086/425271 . PMID   15627236.