WASP-95

Last updated
WASP-95
Observation data
Epoch J2000       Equinox J2000
Constellation Grus
Right ascension 22h 29m 49.73551s [1]
Declination −48° 00 11.0487 [1]
Apparent magnitude  (V)10.09 [2]
Characteristics
Spectral type G2 [2]
Astrometry
Radial velocity (Rv)6.30±0.16 [1]  km/s
Proper motion (μ)RA: 92.151(11)  mas/yr [1]
Dec.: −6.905(14)  mas/yr [1]
Parallax (π)7.2379 ± 0.0157  mas [1]
Distance 450.6 ± 1.0  ly
(138.2 ± 0.3  pc)
Details [3]
Mass 1.110±0.090  M
Radius 1.130+0.080
−0.040
  R
Temperature 5830±140  K
Metallicity [Fe/H]0.14±0.16  dex
Rotational velocity (v sin i)3.10±0.60 km/s
Age 5.0+2.8
−1.8
  Gyr
Other designations
CD−48 14223, CPD−48 10759, TOI-105, TIC  144065872, WASP-95, TYC  8442-960-1, GSC  08442-00960, 2MASS J22294972-4800111 [2]
Database references
SIMBAD data
Extrasolar Planets
Encyclopaedia
data

WASP-95 is a star 451 light-years (138 parsecs ) away in the constellation Grus. With an apparent magnitude of 10.1, it is not visible to the naked eye. Its spectral type of G2 means it is a yellow sunlike star.

Planetary system

In 2013, a planet was discovered around WASP-95. The planet, WASP-95b, is a hot Jupiter about 10% more massive than Jupiter, and completes an orbit round its star every two days. It was discovered by its transit of the star in 2013. [4] The planet's equilibrium temperature is 1692.6±40.4 K. [5]

The WASP-95 planetary system [5]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b1.206+0.065
−0.067
  MJ
0.0312±0.00222.18466560(11)<0.018 [3] 85.9411+0.0065
−0.0066
°
1.098±0.088  RJ

Related Research Articles

<span class="mw-page-title-main">WASP-8</span> Star in the constellation of Sculptor

WASP-8 is a binary star system 294 light-years away. The star system is much younger than the Sun at 300 million to 1.2 billion years age, and is heavily enriched in heavy elements, having nearly twice the concentration of iron compared to the Sun.

WASP-11/HAT-P-10 is a binary star. It is a primary main-sequence orange dwarf star. Secondary is M-dwarf with a projected separation of 42 AU. The system is located about 424 light-years away in the constellation Aries.

<span class="mw-page-title-main">WASP-4</span> G-type main sequence star in the constellation Phoenix

WASP-4 is a G-type main sequence star approximately 891 light-years away in the constellation of Phoenix. Despite its advanced age, the star is rotating rapidly, being spun up by the tides raised by a giant planet on close orbit.

HAT-P-4 is a wide binary star consisting of a pair of G-type main-sequence stars in the constellation of Boötes. It is also designated BD+36°2593.

WASP-18 is a magnitude 9 star located 400 light-years away in the Phoenix constellation of the southern hemisphere. It has a mass of 1.29 solar masses.

<span class="mw-page-title-main">HD 15082</span> Star in the constellation Andromeda

HD 15082 is a star located roughly 399 light years away in the northern constellation of Andromeda. The star is a Delta Scuti variable and a planetary transit variable. A hot Jupiter type extrasolar planet, named WASP-33b or HD 15082b, orbits this star with an orbital period of 1.22 days. It is the first Delta Scuti variable known to host a planet.

WASP-56 is a sun-like star of spectral type G6 in the constellation of Coma Berenices. It has an apparent magnitude of 11.48. Observations at the Calar Alto Observatory using the lucky imaging technique detected a candidate companion star located 3.4 arc seconds away, however it is not known if this is an actual binary companion or an optical double.

WASP-66, also known as TYC 7193-1804-1, is an F-type star in the constellation Antlia. It has an apparent magnitude of 11.6, which is much too faint to be seen with the unaided eye and is located at a distance of 1,630 light years.

HD 146389, is a star with a yellow-white hue in the northern constellation of Hercules. The star was given the formal name Irena by the International Astronomical Union in January 2020. It is invisible to the naked eye with an apparent visual magnitude of 9.4 The star is located at a distance of approximately 446 light years from the Sun based on parallax, but is drifting closer with a radial velocity of −9 km/s. The star is known to host one exoplanet, designated WASP-38b or formally named 'Iztok'.

WASP-35 is a G-type main-sequence star about 660 light-years away. The star's age cannot be well constrained, but it is probably older than the Sun. WASP-35 is similar in concentration of heavy elements compared to the Sun.

BD-07 436, also known as WASP-77 since 2012, is a binary star system about 344 light-years away. The star's components appears to have a different age, with the secondary older than 9 billion years, while the primary's age is 5 billion years. The BD-07 436 system's concentration of heavy elements is similar to the Sun. Its stars display moderate chromospheric activity, including x-ray flares.

WASP-72 is the primary of a binary star system. It is an F7 class dwarf star, with an internal structure just on the verge of the Kraft break. It is orbited by a planet WASP-72b. The age of WASP-72 is younger than the Sun at 3.55±0.82 billion years.

WASP-63 or Kosjenka, also known as CD-38 2551, is a single star with an exoplanetary companion in the southern constellation of Columba. It is too faint to be visible with the naked eye, having an apparent visual magnitude of 11.1. The distance to this system is approximately 942 light-years based on parallax measurements, but it is drifting closer with a radial velocity of −24 km/s.

WASP-60 is a F-type main-sequence star about 1420 light-years away. The stars age is much younger than the Sun's at 1.7±0.5 billion years. WASP-60 is enriched in heavy elements, having 180% of the solar abundance of iron. The star does not have noticeable starspot activity, an unexpected observation for a relatively young star. The age of WASP-60 determined by different methods is highly discrepant though, and it may actually be an old star which experienced an episode of spin-up in the past.

WASP-58 is a binary star system comprising a G-type main-sequence star and a red dwarf about 955 light-years away. WASP-58 is slightly depleted in heavy elements, having 80% of the solar abundance of iron. WASP-58 is much older than the Sun at 12.80+0.20
−2.10
billion years.

WASP-57 is a single G-type main-sequence star about 1310 light-years away. WASP-57 is depleted in heavy elements, having 55% of the solar abundance of iron. WASP-57 is much younger than the Sun at 0.957±0.518 billion years.

WASP-52 is a K-type main-sequence star about 570 light-years away. It is older than the Sun at 10.7+1.9
−4.5
billion years, but it has a similar fraction of heavy elements. The star has prominent starspot activity, with 3% to 14% of the stellar surface covered by areas 575±150 K cooler than the rest of the photosphere.

WASP-41 is a G-type main-sequence star. Its surface temperature is 5450±150 K. WASP-41 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of −0.080±0.090, but is much younger at an age of 2.289±0.077 billion years. The star does exhibit strong starspot activity, with spots covering 3% of the stellar surface.

WASP-75 is a F-type main-sequence star about 980 light-years away. The star is much younger than the Sun at approximately 2.9±0.2 billion years. WASP-75 is similar to the Sun in its concentration of heavy elements.

WASP-84, also known as BD+02 2056, is a G-type main-sequence star 327 light-years away in the constellation Hydra. Its surface temperature is 5350±31 K and is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.05±0.02. It is rich in carbon and depleted of oxygen. WASP-84's age is probably older than the Sun at 8.5+4.1
−5.5
billion years. The star appears to have an anomalously small radius, which can be explained by the unusually high helium fraction or by it being very young.

References

  1. 1 2 3 4 5 6 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID   244398875. Gaia DR3 record for this source at VizieR.
  2. 1 2 3 "WASP-95". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 30 December 2016.
  3. 1 2 Bonomo, A. S.; Desidera, S.; et al. (June 2017). "The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy & Astrophysics . 602: A107. arXiv: 1704.00373 . Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. S2CID   118923163.
  4. Hellier, Coel; Anderson, D. R.; Collier Cameron, A.; Delrez, L.; et al. (2013). "Transiting Hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-95b to WASP-101b". Monthly Notices of the Royal Astronomical Society. 440 (3): 1982–1992. arXiv: 1310.5630 . Bibcode:2014MNRAS.440.1982H. doi:10.1093/mnras/stu410. S2CID   54977201.
  5. 1 2 Saha, Suman; Sengupta, Sujan (2021), "Critical Analysis of Tess Transit Photometric Data: Improved Physical Properties for Five Exoplanets", The Astronomical Journal, 162 (5): 221, arXiv: 2109.11366 , Bibcode:2021AJ....162..221S, doi: 10.3847/1538-3881/ac294d , S2CID   237605336