Wind power in Iran

Last updated
As a further drive toward diversification of energy sources, Iran has also established wind farms in several areas, this one near Manjeel. Manjeel windmills.jpg
As a further drive toward diversification of energy sources, Iran has also established wind farms in several areas, this one near Manjeel.

The energy system of Iran relies primarily on fossil fuels. However, the country has made steps to decrease its dependency on fossil fuels by investing in wind power. [1] In 2004 Iran generated only 25 megawatts from wind power, 32 megawatts in 2005, and 45 megawatts in 2006. By 2009, total wind power capacity reached 130 megawatts. This was a result of the production of larger wind farms in more coastal and windy areas of Iran, such as Manjeel (Gilan province) and Binaloud (Razavi Khorasan Province). [2] [3] In 2021, Iran's total capacity of onshore wind power grew by 0.6%. [4]

Contents

In March 2023, 'Mil Nader' 50-MW wind farm became operation in Sistan and Baluchestan province. [5]

History

Energy infrastructure of Iran was mainly based on fossil fuels. However, by investing in wind electricity, the country has taken measures to reduce its reliance on fossil fuels. With the help from Sadid Industrial Group (Iranian manufacturing company) and investments as well as resources from Indian (Sulzon Energy) and German (Siemens) wind turbine companies, Iran has been able to build a strong and stable wind sector. [1]

To boost up the wind energy production, the Renewable Energy Organization of Iran (SUNA) based its new feed-in tariff policy on the German equivalent, assured government electricity sales for 20 years, and implemented a 15% tax cut for businesses using domestic components. [6]

According to the Iranian minister of powder, before the revolution, foreign states provided the infrastructure for the electricity sector in Iran, and Iranian technicians were only permitted to replace the transformer oil. Today, however, the Iranian electricity sector has almost entirely attained self-sufficiency. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Wind power in Germany</span> Overview of wind power in Germany

Wind power in Germany is a growing industry. The installed capacity was 55.6 gigawatts (GW) at the end of 2017, with 5.2 GW from offshore installations. In 2019, a quarter of the country's total electricity was generated using wind power, compared to an estimated 9.3% in 2010.

<span class="mw-page-title-main">Wind power in the European Union</span>

As of December 2017, the European Union had a total installed wind capacity of 169.3gigawatts (GW). In 2017, a total of 15,680 MW of wind power was installed, representing 55% of all new power capacity, and the wind power generated 336 TWh of electricity, enough to supply 11.6% of the EU's electricity consumption.

Wind power has a history in Canada dating back many decades, particularly on prairie farms. As of December 2021, wind power generating capacity was approximately 14,304 megawatts (MW). Combined with 2,399 MW of solar power generating capacity, this provided about 6.5% of Canada's electricity demand as of 2020. The Canadian Wind Energy Association (CanWEA) has outlined a future strategy for wind energy that would reach a capacity of 55 GW by 2025, meeting 20% of the country's energy needs.

<span class="mw-page-title-main">Wind power in Texas</span> Electricity from wind in one U.S. state

Wind power in Texas, a portion of total energy in Texas, consists of over 150 wind farms, which together have a total nameplate capacity of over 30,000 MW. If Texas were a country, it would rank fifth in the world: The installed wind capacity in Texas exceeds installed wind capacity in all countries but China, the United States, Germany and India. Texas produces the most wind power of any U.S. state. According to the Electric Reliability Council of Texas (ERCOT), wind power accounted for at least 15.7% of the electricity generated in Texas during 2017, as wind was 17.4% of electricity generated in ERCOT, which manages 90% of Texas's power. ERCOT set a new wind output record of nearly 19.7 GW at 7:19 pm Central Standard Time on Monday, January 21, 2019.

<span class="mw-page-title-main">Community wind energy</span> Local ratepayer-owned air current power

Community wind projects are locally owned by farmers, investors, businesses, schools, utilities, or other public or private entities who utilize wind energy to support and reduce energy costs to the local community. The key feature is that local community members have a significant, direct financial stake in the project beyond land lease payments and tax revenue. Projects may be used for on-site power or to generate wholesale power for sale, usually on a commercial-scale greater than 100 kW.

The RES Group is a global renewable energy company which has been active in the renewable energy industry for over 30 years. Its core business is to develop, construct and operate large-scale, grid-connected renewable energy projects worldwide for commercial, industrial and utility clients. RES is active in the wind and solar energy sectors and is increasingly focused on the transition to a low-carbon economy providing transmission, energy storage and demand side management expertise.

<span class="mw-page-title-main">Renewable energy in Canada</span> Use of renewable resources in Canada

As of 2019, renewable energy technologies provide about 17.3% of Canada's total primary energy supply. For electricity renewables provide 67%, with 15% from nuclear and 18% from hydrocarbons.

<span class="mw-page-title-main">Energy in Afghanistan</span> Overview of the production, consumption, import and export of energy and electricity in Afghanistan

Energy in Afghanistan is provided by hydropower followed by fossil fuel and solar power. Currently, less than 50% of Afghanistan's population has access to electricity. This covers the major cities in the country. Many rural areas do not have access to adequate electricity but this should change after the major CASA-1000 project is completed.

<span class="mw-page-title-main">Renewable energy in Morocco</span>

As of 2019, renewable energy in Morocco covered 35% of the country’s electricity needs.

In 2016, Arizona had 268 megawatts (MW) of wind powered electricity generating capacity, producing 0.5% of in-state generated electricity.

<span class="mw-page-title-main">Wind power in Japan</span>

In Japan's electricity sector, wind power generates a small proportion of the country's electricity. It has been estimated that Japan has the potential for 144 gigawatts (GW) for onshore wind and 608 GW of offshore wind capacity. As of 2020, the country had a total installed capacity of 4.2 GW.

<span class="mw-page-title-main">Energy in Malta</span> Energy production, consumption and import in Malta

Energy in Malta describes energy production, consumption and import in Malta. Malta has no domestic resource of fossil fuels and no gas distribution network, and relies overwhelmingly on imports of fossil fuels and electricity to cover its energy needs. Since 2015, the Malta–Sicily interconnector allows Malta to be connected to the European power grid and import a significant share of its electricity.

Despite the historic usage of wind power to drain water and grind grain, the Netherlands today lags behind all other member states of the European Union in the production of energy from renewable sources. In 2019, the Netherlands produced just 8.6% of its total energy from renewables.[data unknown/missing] According to statistics published by Eurostat, it is the last among the EU countries in the shift away from global warming-inducing energy sources. The leading renewable sources in the country are biomass, wind, solar and both geothermal and aerothermal power. In 2018 decisions were taken to replace natural gas as the main energy source in the Netherlands with increased electrification being a major part of this process.

The following outline is provided as an overview of and topical guide to wind energy:

<span class="mw-page-title-main">Energy in Hawaii</span> Overview of energy resources in Hawaii, US

Energy in the U.S. state of Hawaii is produced from a mixture of fossil fuel and renewable resources. Producing energy is complicated by the state's isolated location and lack of fossil fuel resources. The state relies heavily on imports of petroleum. Hawaii has the highest share of petroleum use in the United States, with about 62% of electricity coming from oil in 2017. As of 2021 renewable energy made up 34.5%.

<span class="mw-page-title-main">Energy in Georgia (country)</span>

Georgia had a total primary energy supply (TPES) of 4.793 Mtoe in 2016. Electricity consumption was 11.5 TWh in 2016. Electricity production was 11.6 TWh, of which 81% from hydroelectricity and 19% from natural gas.

<span class="mw-page-title-main">Renewable energy in South Africa</span>

Renewable energy in South Africa is energy generated in South Africa from renewable resources, those that naturally replenish themselves—such as sunlight, wind, tides, waves, rain, biomass, and geothermal heat. Renewable energy focuses on four core areas: electricity generation, air and water heating/cooling, transportation, and rural energy services. The energy sector in South Africa is an important component of global energy regimes due to the country's innovation and advances in renewable energy. South Africa's greenhouse gas (GHG) emissions is ranked as moderate and its per capita emission rate is higher than the global average. Energy demand within the country is expected to rise steadily and double by 2025.

Zambia is potentially self-sufficient in sources of electricity, coal, biomass and renewable energy. The only energy source where the country is not self-sufficient is petroleum energy. Many of the sources of energy where the country is self-sufficient are largely unexploited. As of 2017, the country's electricity generating capacity stood at 1,901 megawatts.

References

  1. 1 2 "Iran – Asia Wind Energy Association 2023" . Retrieved 2023-04-03.
  2. Iran to construct 2000 MW in renewable energy capacity, much from biomass : Biomass Digest – biofuels, biodiesel, ethanol, algae, jatropha, green gasoline, green diesel, and b...
  3. IR : Iran Announces New Renewable Energy Facilities – General news news
  4. "Iran Wind Energy Market Size & Share Analysis - Industry Research Report - Growth Trends". www.mordorintelligence.com. Retrieved 2023-04-03.
  5. 1 2 "نیروگاه بادی ۵۰ مگاواتی «میل نادر» در نوبت افتتاح/ تعداد روستاهای مشمول «جهاد آبرسانی» امسال افزایش می‌یابد". خبرگزاری ایلنا (in Persian). Retrieved 2023-04-03.
  6. "Iran's Renewable Energy Potential". Middle East Institute. Retrieved 2023-04-03.

Bibliography

  1. F., F., N., S., S., S., & M.A., R. (2015). Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil. Renewable and Sustainable Energy Reviews, v45, 87-99.
  2. Fatemeh Rahimzadeh Affiliation: Atmospheric Science and Meteorological Research Center (ASMERC), T. I., & Affiliation:, A. M. (2011). Wind speed variability over Iran and its impact on wind power potential: a case study for Esfehan Province. Meteorological Applications, v18 n2, 198-210.
  3. Gholamhassan Najafi Affiliation: Tarbiat Modares University, P. B.-1., & Barat Ghobadian Affiliation: Tarbiat Modares University, P. B.-1. (2015). LLK1694-wind energy resources and development in Iran. Renewable and Sustainable Energy Reviews, v15 n6, 2719-2728.
  4. Julien Mercille Affiliation: School of Geography, P. a., & Alun Jones Affiliation: School of Geography, P. a. (2009). Practicing Radical Geopolitics: Logics of Power and the Iranian Nuclear “Crisis”. Annals of the Association of American Geographers, v99 n5, 856-862.
  5. Kasra Mohammadi Affiliation: Department of Mechanical and Industrial Engineering, U. o., Ali Mostafaeipour Affiliation: Industrial Engineering Department, Y. U., & Affiliat, A. S. (2009). Application and economic viability of wind turbine installation in Lutak, Iran. Environmental Earth Sciences, v75 n3, 1-16.
  6. Sayed Moslem Mousavi Affiliation: Sharif University of Technology, I., & Morteza Bagheri Ghanbarabadi Affiliation: Sharif University of Technology, I. (2015). The competitiveness of wind power compared to existing methods of electricity generation in Iran. Energy Policy, v42 (201203), 651-656.
  7. Wyn Q Bowen Affiliation: Defence Studies Department, K. C., & London, J. K. (2004). The Iranian Nuclear Challenge. International Affairs, v80 n2, 257-276.