The zero page or base page is the block of memory at the very beginning of a computer's address space; that is, the page whose starting address is zero. The size of a page depends on the context, and the significance of zero page memory versus higher addressed memory is highly dependent on machine architecture. For example, the Motorola 6800 and MOS Technology 6502 processor families treat the first 256 bytes of memory specially, [1] whereas many other processors do not.
Unlike more modern hardware, in the 1970s computer RAM speed was similar to that of CPUs.[ citation needed ] Thus it made sense to have few registers and use the main memory as an extended pool of extra registers. In machines with a relatively wide 16-bit address bus and comparatively narrow 8-bit data bus, calculating an address in memory could take several cycles. The zero page's one-byte address was smaller and therefore faster to read and calculate than other locations, making the zero page useful for high-performance code.
Zero page addressing now has mostly historical significance, since the developments in integrated circuit technology have made adding more registers to a CPU less expensive and CPU operations much faster than RAM accesses.
The actual size of the zero page in bytes is determined by the microprocessor design and in older designs, is often equal to the largest value that can be referenced by the processor's indexing registers. For example, the aforementioned 8-bit processors have 8-bit index registers and a page size of 256 bytes. Therefore, their zero page extends from address 0 to address 255.
In early computers, such as the PDP-8, the zero page had a special fast addressing mode, which facilitated its use for temporary storage of data and compensated for the paucity of CPU registers. The PDP-8 had only one register, so zero page addressing was essential. In the original PDP-10 KA-10 models, the available registers are simply the first 16 words, 36-bits long, of main memory. Those locations can be accessed as both registers and memory locations.
Unlike more modern hardware, 1970s-era computer RAM was as fast as the CPU. Thus, it made sense to have few registers and use the main memory as an extended pool of extra registers. In machines with a 16-bit address bus and 8-bit data bus, accessing zero page locations could be faster than accessing other locations. Since zero page locations could be addressed by a single byte, the instructions accessing them could be shorter and hence faster-loading.
For example, the MOS Technology 6502 family has only one general purpose register: the accumulator. To offset this limitation and gain a performance advantage, the 6502 is designed to make special use of the zero page, providing instructions whose operands are eight bits, instead of 16, thus requiring fewer memory fetch cycles. Many instructions are coded differently for zero page and non-zero page addresses; this is called zero-page addressing in 6502 terminology (it is called direct addressing in Motorola 6800 terminology; the Western Design Center 65C816 also refers to zero page addressing as direct page addressing):
LDA$12; zero page addressingLDA$0012; absolute addressing
In 6502 assembly language, the above two instructions both accomplish the same thing: they load the value of memory location $12
into the .A
(accumulator) register ($
is Motorola/MOS Technology assembly language notation for a hexadecimal number). However, the first instruction is only two bytes long and requires three clock cycles to complete. The second instruction is three bytes in length and requires four clock cycles to execute. This difference in execution time could become significant in repetitive code.
Some processors, such as the Motorola 6809 and the aforementioned WDC 65C816, implement a “direct page register” (DP
) that tells the processor the starting address in RAM of what is considered to be zero page. In this context, zero page addressing is notional; the actual access would not be to the physical zero page if DP
is loaded with some address other than $00
(or $0000
in the case of the 65C816).
Some computer architectures still reserve the beginning of address space for other purposes, though; for instance, Intel x86 systems reserve the first 256 double-words of address space for the interrupt vector table (IVT) if they run in real mode.
A similar technique of using the zero page for hardware related vectors was employed in the ARM architecture. In badly written programs this could lead to "ofla" behaviour, where a program tries to read information from an unintended memory area, and treats executable code as data or vice versa. This is especially problematic if the zero page area is used to store system jump vectors and the firmware is tricked into overwriting them. [2]
In 8-bit CP/M, the zero page is used for communication between the running program and the operating system.
In some processor architectures, like that of the Intel 4004 4-bit processor, memory was divided into (256 byte) pages and special precautions had to be taken when the control flow crossed page boundaries, as some machine instructions exhibited different behaviour if located in the last few instructions of a page, so that only few instructions were recommended to jump between pages. [3]
Contrary to the zero page's original preferential use, some modern operating systems such as FreeBSD, Linux, Solaris, macOS, and Microsoft Windows [4] actually make the zero page inaccessible to trap uses of null pointers. Such pointer values may legitimately indicate uninitialized values or sentinel nodes, but they do not point to valid objects. Buggy code may try to access an object via a null pointer, and this can be trapped at the operating system level as a memory access violation.
The 8086 is a 16-bit microprocessor chip designed by Intel between early 1976 and June 8, 1978, when it was released. The Intel 8088, released July 1, 1979, is a slightly modified chip with an external 8-bit data bus, and is notable as the processor used in the original IBM PC design.
The Intel 8088 microprocessor is a variant of the Intel 8086. Introduced on June 1, 1979, the 8088 has an eight-bit external data bus instead of the 16-bit bus of the 8086. The 16-bit registers and the one megabyte address range are unchanged, however. In fact, according to the Intel documentation, the 8086 and 8088 have the same execution unit (EU)—only the bus interface unit (BIU) is different. The 8088 was used in the original IBM PC and in IBM PC compatible clones.
The Motorola 68000 is a 16/32-bit complex instruction set computer (CISC) microprocessor, introduced in 1979 by Motorola Semiconductor Products Sector.
The MOS Technology 6502 is an 8-bit microprocessor that was designed by a small team led by Chuck Peddle for MOS Technology. The design team had formerly worked at Motorola on the Motorola 6800 project; the 6502 is essentially a simplified, less expensive and faster version of that design.
The 6800 is an 8-bit microprocessor designed and first manufactured by Motorola in 1974. The MC6800 microprocessor was part of the M6800 Microcomputer System that also included serial and parallel interface ICs, RAM, ROM and other support chips. A significant design feature was that the M6800 family of ICs required only a single five-volt power supply at a time when most other microprocessors required three voltages. The M6800 Microcomputer System was announced in March 1974 and was in full production by the end of that year.
The Motorola 6809 ("sixty-eight-oh-nine") is an 8-bit microprocessor with some 16-bit features. It was designed by Motorola's Terry Ritter and Joel Boney and introduced in 1978. Although source compatible with the earlier Motorola 6800, the 6809 offered significant improvements over it and 8-bit contemporaries like the MOS Technology 6502, including a hardware multiplication instruction, 16-bit arithmetic, system and user stack registers allowing re-entrant code, improved interrupts, position-independent code, and an orthogonal instruction set architecture with a comprehensive set of addressing modes.
The Zilog Z80 is an 8-bit microprocessor designed by Zilog that played an important role in the evolution of early computing. Launched in 1976 and software-compatible with the Intel 8080, it offered a compelling alternative due to its better integration and increased performance. As well as the 8080's seven registers and flags register, the Z80 had an alternate register set that duplicated them, two 16-bit index registers and additional instructions including bit manipulation and block copy/search.
In computer architecture, 8-bit integers or other data units are those that are 8 bits wide. Also, 8-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers or data buses of that size. Memory addresses for 8-bit CPUs are generally larger than 8-bit, usually 16-bit. 8-bit microcomputers are microcomputers that use 8-bit microprocessors.
The Intel 8085 ("eighty-eighty-five") is an 8-bit microprocessor produced by Intel and introduced in March 1976. It is the last 8-bit microprocessor developed by Intel.
The KIM-1, short for Keyboard Input Monitor, is a small 6502-based single-board computer developed and produced by MOS Technology, Inc. and launched in 1976. It was very successful in that period, due to its low price and easy-access expandability.
An index register in a computer's CPU is a processor register used for pointing to operand addresses during the run of a program. It is useful for stepping through strings and arrays. It can also be used for holding loop iterations and counters. In some architectures it is used for read/writing blocks of memory. Depending on the architecture it may be a dedicated index register or a general-purpose register. Some instruction sets allow more than one index register to be used; in that case additional instruction fields may specify which index registers to use.
In computing, a memory address is a reference to a specific memory location in memory used by both software and hardware. These addresses are fixed-length sequences of digits, typically displayed and handled as unsigned integers. This numerical representation is based on the features of CPU, as well programming language constructs that treat the memory like an array.
Addressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture define how the machine language instructions in that architecture identify the operand(s) of each instruction. An addressing mode specifies how to calculate the effective memory address of an operand by using information held in registers and/or constants contained within a machine instruction or elsewhere.
The TMS9900 was one of the first commercially available single-chip 16-bit microprocessors. Introduced in June 1976, it implemented Texas Instruments's TI-990 minicomputer architecture in a single-chip format, and was initially used for low-end models of that lineup.
The Western Design Center (WDC) 65C02 microprocessor is an enhanced CMOS version of the popular nMOS-based 8-bit MOS Technology 6502. It uses less power than the original 6502, fixes several problems, and adds new instructions. The power usage is on the order of 10 to 20 times less than the original 6502 running at the same speed; its reduced power consumption has made it useful in portable computer roles and industrial microcontroller systems. The 65C02 has also been used in some home computers, as well as in embedded applications, including implanted medical devices.
The Tangerine Microtan 65 was a 6502-based single board microcomputer, first sold in 1979, that could be expanded into, what was for its day, a comprehensive and powerful system. The design became the basis for what later became the Oric Atmos and later computers. Those later machines have similar keyboard addressing and tape I/O as the Microtan 65. The Microtan 65 has a hardware single step function that can be used for debugging software in both ROM and RAM. The computer was available as ready-built boards or as kits consisting of board and components requiring soldering together.
The CSG 65CE02 is an 8/16-bit microprocessor developed by Commodore Semiconductor Group in 1988. It is a member of the MOS Technology 6502 family, developed from the CMOS WDC 65C02 released by the Western Design Center in 1983.
In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits wide. Also, 16-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are microcomputers that use 16-bit microprocessors.
The W65C816S is a 16-bit microprocessor (MPU) developed and sold by the Western Design Center (WDC). Introduced in 1985, the W65C816S is an enhanced version of the WDC 65C02 8-bit MPU, itself a CMOS enhancement of the venerable MOS Technology 6502 NMOS MPU. The 65C816 is the CPU for the Apple IIGS and, in modified form, the Super Nintendo Entertainment System.
The Mostek MK5065 was an 8-bit microprocessor introduced by Mostek in early 1974. The design was originally developed by Motorola for use in an Olivetti electronic calculator, and was licensed to Mostek for use in non-calculator roles. It featured three sets of processor registers, allowing it to switch to an interrupt handler in a single cycle, and a wait-for-data mode that aided direct memory access.
{{cite book}}
: CS1 maint: location missing publisher (link)[…] certain instructions function differently when located in the last byte (or bytes) of a page than when located elsewhere. […] Two addresses are on the same page if the highest order hexadecimal digit of their addresses are equal. […] If the JIN instruction is located in the last location of a page in memory, the highest 4 bits of the program counter are incremented by one, causing control to be transferred to the corresponding location on the next page. […] If […] the JIN had been located at address 255 decimal (0FF hexadecimai), control would have been transferred to address 115 hexadecimal, not 015 hexadecimal. This is dangerous programming practice, and should be avoided whenever possible. […] programs are held in either ROM or program RAM, both of which are divided into pages. Each page consists of 256 8-bit locations. Addresses 0 through 255 comprise the first page, 256-511 comprise the second page, and so on. In general, it is good programming practice to never allow program flow to cross a page boundary except by using a JUN or JMS instruction. […]