Coastal sediment transport

Last updated
Assateague Island Assateague Island aerial view.jpg

Coastal sediment transport (a subset of sediment transport) is the interaction of coastal land forms to various complex interactions of physical processes. [1] [2] The primary agent in coastal sediment transport is wave activity (see Wind wave), followed by tides and storm surge (see Tide and Storm surge), and near shore currents (see Sea#Currents) . [1] Wind-generated waves play a key role in the transfer of energy from the open ocean to the coastlines. [1] In addition to the physical processes acting upon the shore, the size distribution of the sediment is a critical determination for how the beach will change (see Grain size determination). These various interactions generate a wide variety of beaches. (see Beach). Other than the interactions between coastal land forms and physical processes there is also the addition of modification of these landforms through anthropogenic sources (see human modifications). Some of the anthropogenic sources of modification have been put in place to halt erosion or prevent harbors from filling up with sediment. [2] In order to assist community planners, local governments, and national governments a variety of models have been developed to predict the changes of beach sediment transport at coastal locations. Typically, during large wave events, the sediment gets transported off the beach face and deposited offshore generating a sandbar. Once the significant wave event has diminished, the sediment then gets slowly transported back onshore. [3]

Contents

History

In the mid-1970s a significant amount of attention was paid to coastal sediment transport. In part, due to the National Sea Grant College Program and the U.S. Congress Mandated Sea Grant Act of 1976. One of the research areas included "the development and the experimental verification of hydrodynamic laws governing the transport of marine sediments in the flow fields occurring in coastal waters." [4] From this request for research, the Office of Sea Grant reviewed, accepted, and funded the Nearshore Sediment Transport Study (NSTS). Due to unforeseen complications the NSTS conducted only two major field experiments and a validation experiment. [4] This was a significant contribution to the field of coastal sediment transport and helped initialize a great deal of future research.

Glossary

shore
zone between the water's edge at normal low tide and the landward limit of effective wave action. [2]
shoreline
the water's edge, migrating up and down with the tide. [2]
foreshore
exposed at low tide and submerged at high tide.
backshore
extending above normal high tide level.
nearshore zone
between shoreline and the line where the waves begin to break. [2]
beach
an accumulation of loose sediment sometimes confined to the backshore but often extending across the foreshore as well.

Beach profile measurements

A variety of measurements are used to determine the beach profile, sediment grain size, and various other important parameters to determine what is influencing coastal sediment transport. Below are a few of the multitude.

Coastal research amphibious buggy (CRAB)

A three-wheeled vehicle deployed at the beach to measure the beach profile. (more information can be found at http://frf.usace.army.mil/vehicles2.stm)

Emory beach profile measurement

A simple depiction of measuring a beach profile and compiling a median grain size. Method for collecting beach sediment and beach profile.jpg
A simple depiction of measuring a beach profile and compiling a median grain size.

In order to determine what the profile of a beach looks like, one method for determination is the Emory Beach Profiling Method. Initiating a benchmark, the researcher establishes a control point to start the surveys at. Typically this is far enough away from the swash zone that large changes in elevation will not occur during the sampling time. Once the initial benchmark is established, the researcher will take the Emory sampling device and measure the change in elevation over the distance the device is covering. Then, they will pick up the device and move it to the end point of their last survey, and so on. Until they reach the shoreline. Typically this is done during neap tide (see Tide for more information on neap tide).

Grain size determination

Since the sand grain diameters can vary throughout the entire beach the median grain size is used to determine sediment fall velocity. Determining sediment fall velocity allows the determination of what sediment is left where... [3]

probability curve for beach face sediment distribution, how to obtain D50 Bay D 50 Prob Curve.jpg
probability curve for beach face sediment distribution, how to obtain D50

Human modifications

Models

Models for the prediction of sediment transport in coastal regions have been used since the mid 1970s. One of the first formulas to calculate coastal sediment transport was developed by Eco Bijker end of sixties. [4] Some transport models are:

Related Research Articles

<span class="mw-page-title-main">Beach</span> Area of loose particles at the edge of the sea or other body of water

A beach is a landform alongside a body of water which consists of loose particles. The particles composing a beach are typically made from rock, such as sand, gravel, shingle, pebbles, etc., or biological sources, such as mollusc shells or coralline algae. Sediments settle in different densities and structures, depending on the local wave action and weather, creating different textures, colors and gradients or layers of material.

<span class="mw-page-title-main">Coastal erosion</span> Displacement of land along the coastline

Coastal erosion is the loss or displacement of land, or the long-term removal of sediment and rocks along the coastline due to the action of waves, currents, tides, wind-driven water, waterborne ice, or other impacts of storms. The landward retreat of the shoreline can be measured and described over a temporal scale of tides, seasons, and other short-term cyclic processes. Coastal erosion may be caused by hydraulic action, abrasion, impact and corrosion by wind and water, and other forces, natural or unnatural.

<span class="mw-page-title-main">Longshore drift</span> Sediment moved by the longshore current

Longshore drift from longshore current is a geological process that consists of the transportation of sediments along a coast parallel to the shoreline, which is dependent on the angle of incoming wave direction. Oblique incoming wind squeezes water along the coast, and so generates a water current which moves parallel to the coast. Longshore drift is simply the sediment moved by the longshore current. This current and sediment movement occur within the surf zone. The process is also known as littoral drift.

<span class="mw-page-title-main">Barrier island</span> Coastal dune landform that forms by wave and tidal action parallel to the mainland coast

Barrier islands are a coastal landform, a type of dune system and sand island, where an area of sand has been formed by wave and tidal action parallel to the mainland coast. They usually occur in chains, consisting of anything from a few islands to more than a dozen. They are subject to change during storms and other action, but absorb energy and protect the coastlines and create areas of protected waters where wetlands may flourish. A barrier chain may extend for hundreds of kilometers, with islands periodically separated by tidal inlets. The largest barrier island in the world is Padre Island of Texas, United States, at 113 miles (182 km) long. Sometimes an important inlet may close permanently, transforming an island into a peninsula, thus creating a barrier peninsula, often including a beach, barrier beach. Though many are long and narrow, the length and width of barriers and overall morphology of barrier coasts are related to parameters including tidal range, wave energy, sediment supply, sea-level trends, and basement controls. The amount of vegetation on the barrier has a large impact on the height and evolution of the island.

<span class="mw-page-title-main">Deposition (geology)</span> Geological process in which sediments, soil and rocks are added to a landform or landmass

Deposition is the geological process in which sediments, soil and rocks are added to a landform or landmass. Wind, ice, water, and gravity transport previously weathered surface material, which, at the loss of enough kinetic energy in the fluid, is deposited, building up layers of sediment.

<span class="mw-page-title-main">Littoral zone</span> Part of a sea, lake, or river that is close to the shore

The littoral zone, also called litoral or nearshore, is the part of a sea, lake, or river that is close to the shore. In coastal ecology, the littoral zone includes the intertidal zone extending from the high water mark, to coastal areas that are permanently submerged — known as the foreshore — and the terms are often used interchangeably. However, the geographical meaning of littoral zone extends well beyond the intertidal zone to include all neritic waters within the bounds of continental shelves.

<span class="mw-page-title-main">Beach nourishment</span> Sediment replacement process

Beach nourishment describes a process by which sediment, usually sand, lost through longshore drift or erosion is replaced from other sources. A wider beach can reduce storm damage to coastal structures by dissipating energy across the surf zone, protecting upland structures and infrastructure from storm surges, tsunamis and unusually high tides. Beach nourishment is typically part of a larger integrated coastal zone management aimed at coastal defense. Nourishment is typically a repetitive process since it does not remove the physical forces that cause erosion but simply mitigates their effects.

<span class="mw-page-title-main">Seawall</span> Form of coastal defence

A seawall is a form of coastal defense constructed where the sea, and associated coastal processes, impact directly upon the landforms of the coast. The purpose of a seawall is to protect areas of human habitation, conservation, and leisure activities from the action of tides, waves, or tsunamis. As a seawall is a static feature, it will conflict with the dynamic nature of the coast and impede the exchange of sediment between land and sea.

<span class="mw-page-title-main">Coastal management</span> Preventing flooding and erosion of shorelines

Coastal management is defence against flooding and erosion, and techniques that stop erosion to claim lands. Protection against rising sea levels in the 21st century is crucial, as sea level rise accelerates due to climate change. Changes in sea level damage beaches and coastal systems are expected to rise at an increasing rate, causing coastal sediments to be disturbed by tidal energy.

<span class="mw-page-title-main">Swash</span> A turbulent layer of water that washes up on the beach after an incoming wave has broken

Swash, or forewash in geography, is a turbulent layer of water that washes up on the beach after an incoming wave has broken. The swash action can move beach materials up and down the beach, which results in the cross-shore sediment exchange. The time-scale of swash motion varies from seconds to minutes depending on the type of beach. Greater swash generally occurs on flatter beaches. The swash motion plays the primary role in the formation of morphological features and their changes in the swash zone. The swash action also plays an important role as one of the instantaneous processes in wider coastal morphodynamics.

Beach evolution occurs at the shoreline where sea, lake or river water is eroding the land. Beaches exist where sand accumulated from centuries-old, recurrent processes that erode rocky and sedimentary material into sand deposits. River deltas deposit silt from upriver, accreting at the river's outlet to extend lake or ocean shorelines. Catastrophic events such as tsunamis, hurricanes, and storm surges accelerate beach erosion.

<span class="mw-page-title-main">Sedimentary budget</span>

Sedimentary budgets are a coastal management tool used to analyze and describe the different sediment inputs (sources) and outputs (sinks) on the coasts, which is used to predict morphological change in any particular coastline over time. Within a coastal environment the rate of change of sediment is dependent on the amount of sediment brought into the system versus the amount of sediment that leaves the system. These inputs and outputs of sediment then equate to the total balance of the system and more than often reflect the amounts of erosion or accretion affecting the morphology of the coast.

Submersion is the sustainable cyclic portion of coastal erosion where coastal sediments move from the visible portion of a beach to the submerged nearshore region, and later return to the original visible portion of the beach. The recovery portion of the sustainable cycle of sediment behaviour is named accretion.

<span class="mw-page-title-main">Coastal engineering</span> Branch of civil engineering

Coastal engineering is a branch of civil engineering concerned with the specific demands posed by constructing at or near the coast, as well as the development of the coast itself.

<span class="mw-page-title-main">Canterbury Bight</span> Oceanic bight in Canterbury, New Zealand

The Canterbury Bight is a large bight on the eastern side of New Zealand's South Island. The bight runs for approximately 135 kilometres (84 mi) from the southern end of Banks Peninsula to the settlement of Timaru and faces southeast, exposing it to high-energy storm waves originating in the Pacific Ocean. The bight is known for rough conditions as a result, with wave heights of over 2 metres (6.6 ft) common. Much of the bight's geography is shaped by this high-energy environment interacting with multiple large rivers which enter the Pacific in the bight, such as the Rakaia, Ashburton / Hakatere, and Rangitata Rivers. Sediment from these rivers, predominantly Greywacke, is deposited along the coast and extends up to 50 kilometres (31 mi) out to sea from the current shoreline. Multiple hapua, or river-mouth lagoons, can be found along the length of the bight where waves have deposited sufficient sediment to form a barrier across a river mouth, including most notably Lake Ellesmere / Te Waihora and Washdyke Lagoon

<span class="mw-page-title-main">Flat coast</span> Shoreline where the land descends gradually into the sea

At a flat coast or flat shoreline, the land descends gradually into the sea. Flat coasts can be formed either as a result of the sea advancing into gently sloping terrain or through the abrasion of loose rock. They may be basically divided into two parallel strips: the shoreface and the beach.

<span class="mw-page-title-main">Bruun rule</span> Formula for estimating the magnitude of shoreline retreat due to changes in sea level

The Bruun rule is a formula for estimating the magnitude of the retreat of the shoreline of a sandy shore in response to changes in sea level. Originally published in 1962 by Per Bruun, the Bruun rule was the first to give a relationship between sea level rise and shoreline recession. The rule is a simple, two dimensional mass conversion, and remains in common use to estimate shoreline recession in response to sea level rise, despite criticism and modification, and the availability of more complex alternate models.

<span class="mw-page-title-main">Hapua</span>

A hapua is a river-mouth lagoon on a mixed sand and gravel (MSG) beach, formed at the river-coast interface where a typically braided, although sometimes meandering, river interacts with a coastal environment that is significantly affected by longshore drift. The lagoons which form on the MSG coastlines are common on the east coast of the South Island of New Zealand and have long been referred to as hapua by Māori people. This classification differentiates hapua from similar lagoons located on the New Zealand coast termed waituna.

<span class="mw-page-title-main">Beaches in estuaries and bays</span> Type of beaches

Beaches in estuaries and bays (BEBs) refer to beaches that exist inside estuaries or bays and therefore are partially or fully sheltered from ocean wind waves, which are a typical source of energy to build beaches. Beaches located inside harbours and lagoons are also considered BEBs. BEBs can be unvegetated or partially unvegetated and can be made of sand, gravel or shells. As a consequence of the sheltering, the importance of other sources of wave energy, including locally generated wind waves and infragravity waves, may be more important for BEBs than for those beaches on the open coast. Boat wakes, currents driven by tides, and river inflow can also be important for BEBs. When BEBs receive insufficient wave energy, they can become inactive, and stabilised by vegetation; this may occur through both natural processes and human action. BEBs exist in all latitudes from beaches located in fjords and drowned river valleys (rias) in high latitudes to beaches located in the equatorial zone like, for example, the Amazon estuarine beaches.

The nonlinearity of surface gravity waves refers to their deviations from a sinusoidal shape. In the fields of physical oceanography and coastal engineering, the two categories of nonlinearity are skewness and asymmetry. Wave skewness and asymmetry occur when waves encounter an opposing current or a shallow area. As waves shoal in the nearshore zone, in addition to their wavelength and height changing, their asymmetry and skewness also change. Wave skewness and asymmetry are often implicated in ocean engineering and coastal engineering for the modelling of random sea states, in particular regarding the distribution of wave height, wavelength and crest length. For practical engineering purposes, it is important to know the probability of these wave characteristics in seas and oceans at a given place and time. This knowledge is crucial for the prediction of extreme waves, which are a danger for ships and offshore structures. Satellite altimeter Envisat RA-2 data shows geographically coherent skewness fields in the ocean and from the data has been concluded that large values of skewness occur primarily in regions of large significant wave height.

References

  1. 1 2 3 Komar, Paul D. Crc Handbook of Coastal Processes and Erosion. Crc Series in Marine Science. Boca Raton, Fla.: CRC Press, 1983. Print.
  2. 1 2 3 4 5 Bird, E. C. F. Coasts. An Introduction to Systematic Geomorphology,. Cambridge, Mass.,: M.I.T. Press, 1969. Print.
  3. 1 2 Dean, Robert G., and Robert A. Dalrymple. Coastal Processes : With Engineering Applications. Cambridge, UK New York: Cambridge University Press, 2002. Print.
  4. 1 2 3 Seymour, Richard J. Nearshore Sediment Transport. New York; London: Plenum Press, 1989. Print.
  5. Dalrymple, R.A., Prediction of Storm/Normal Beach Profiles, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 118, 2, 193-200, 1992.