JD5037

Last updated
JD5037
JD5037 skeletal.png
Identifiers
  • (S)-2-((S,E)-3-(4-chlorophenyl)-N'-((4-chlorophenyl)sulfonyl)-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboximidamido)-3-methylbutanamide
ChemSpider
Chemical and physical data
Formula C27H27Cl2N5O3S
Molar mass 572.506 g·mol−1
3D model (JSmol)
  • CC(C)[C@@H](C(=O)N)N/C(=N\S(=O)(=O)C1=CC=C(C=C1)Cl)/N2C[C@@H](C(=N2)C3=CC=C(C=C3)Cl)C4=CC=CC=C4
  • InChI=1S/C27H27Cl2N5O3S/c1-17(2)24(26(30)35)31-27(33-38(36,37)22-14-12-21(29)13-15-22)34-16-23(18-6-4-3-5-7-18)25(32-34)19-8-10-20(28)11-9-19/h3-15,17,23-24H,16H2,1-2H3,(H2,30,35)(H,31,33)/t23-,24+/m1/s1
  • Key:GTCSIQFTNPTSLO-RPWUZVMVSA-N

JD5037 is an antiobesity drug candidate which acts as a peripherally-restricted cannabinoid inverse agonist at CB1 receptors. It is very selective for the CB1 subtype, with a Ki of 0.35nM, >700-fold higher affinity than it has for CB2 receptors. [1]

In animal studies, JD5037 does not readily cross the blood brain barrier and thus is not expected to produce the psychiatric side effects in humans which led to the withdrawal of rimonabant from the market. Its antiobesity effects are believed to be mediated by blockade of peripheral CB1 receptors, resulting in decreased leptin expression and secretion and increased leptin clearance by the kidneys. In obese mice given the drug, the resulting resensitization to leptin levels produced decreased food intake, weight loss, and normalized responses to glucose and insulin.

In a study of mice, JD5037 reduced the consumption of alcohol. [2]

JD5037 is covered in the following US Patents issued to Jenrin Discovery: 8,088,809 (1/3/12) ), 7,666,889 (2/23/10), 7,482,470 (1/27/09). The synthesis of JD-5037 and related analogs along with structure activity relationships has been reported. [3]

A review on the approaches and compound types being pursued as peripherally restricted CB1 receptor blockers, including JD5037, has been published. [4]

Preclinical Toxicity

A preclinical toxicity study of JD5037 in rats and beagle dogs reported NOAELs in rats (150 mg/kg) and dogs (20 mg/kg in males and 75 mg/kg in females). [5] JD5037 showed non-linear kinetics where high dose levels showed plasma saturation with lower plasma drug concentrations. The plasma concentration (area under the curve, AUC) in dogs that were given free access to food was almost 4.5 times greater compared to the dogs that were fasted prior to dose administration. [5] This indicates that the presence of food in the gastrointestinal tract may increase the absorption of JD5037.

Related Research Articles

The endocannabinoid system (ECS) is a biological system composed of endocannabinoids, which are endogenous lipid-based retrograde neurotransmitters that bind to cannabinoid receptors (CBRs), and cannabinoid receptor proteins that are expressed throughout the vertebrate central nervous system and peripheral nervous system. The endocannabinoid system remains under preliminary research, but may be involved in regulating physiological and cognitive processes, including fertility, pregnancy, pre- and postnatal development, various activity of immune system, appetite, pain-sensation, mood, and memory, and in mediating the pharmacological effects of cannabis. The ECS plays an important role in multiple aspects of neural functions, including the control of movement and motor coordination, learning and memory, emotion and motivation, addictive-like behavior and pain modulation, among others.

<span class="mw-page-title-main">Taranabant</span> Chemical compound

Taranabant (codenamed MK-0364) is a cannabinoid receptor type 1 (CB1) inverse agonist that was investigated as a potential treatment for obesity due to its anorectic effects. It was discovered by Merck & Co.

<span class="mw-page-title-main">JWH-147</span> Chemical compound

JWH-147 is an analgesic drug used in scientific research, which acts as a cannabinoid agonist at both the CB1 and CB2 receptors. It is somewhat selective for the CB2 subtype, with a Ki of 11.0 nM at CB1 vs 7.1 nM at CB2. It was discovered and named after the renowned professor of organic chemistry John W. Huffman.

<span class="mw-page-title-main">Surinabant</span> Chemical compound

Surinabant (SR147778) is a cannabinoid receptor type 1 antagonist developed by Sanofi-Aventis. It is being investigated as a potential treatment for nicotine addiction, to assist smoking cessation. It may also be developed as an anorectic drug to assist with weight loss, however there are already several CB1 antagonists or inverse agonists on the market or under development for this application, so surinabant is at present mainly being developed as an anti-smoking drug, with possible application in the treatment of other addictive disorders such as alcoholism. Other potential applications such as treatment of ADHD have also been proposed.

A cannabinoid receptor antagonist, also known simply as a cannabinoid antagonist or as an anticannabinoid, is a type of cannabinoidergic drug that binds to cannabinoid receptors (CBR) and prevents their activation by endocannabinoids. They include antagonists, inverse agonists, and antibodies of CBRs. The discovery of the endocannabinoid system led to the development of CB1 receptor antagonists. The first CBR inverse agonist, rimonabant, was described in 1994. Rimonabant blocks the CB1 receptor selectively and has been shown to decrease food intake and regulate body-weight gain. The prevalence of obesity worldwide is increasing dramatically and has a great impact on public health. The lack of efficient and well-tolerated drugs to cure obesity has led to an increased interest in research and development of CBR antagonists. Cannabidiol (CBD), a naturally occurring cannabinoid and a non-competitive CB1/CB2 receptor antagonist, as well as Δ9-tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid, modulate the effects of THC via direct blockade of cannabinoid CB1 receptors, thus behaving like first-generation CB1 receptor inverse agonists, such as rimonabant. CBD is a very low-affinity CB1 ligand, that can nevertheless affect CB1 receptor activity in vivo in an indirect manner, while THCV is a high-affinity CB1 receptor ligand and potent antagonist in vitro and yet only occasionally produces effects in vivo resulting from CB1 receptor antagonism. THCV has also high affinity for CB2 receptors and signals as a partial agonist, differing from both CBD and rimonabant.

<span class="mw-page-title-main">Ibipinabant</span> Chemical compound

Ibipinabant (SLV319, BMS-646,256) is a drug used in scientific research which acts as a potent and highly selective CB1 antagonist. It has potent anorectic effects in animals, and was researched for the treatment of obesity, although CB1 antagonists as a class have now fallen out of favour as potential anorectics following the problems seen with rimonabant, and so ibipinabant is now only used for laboratory research, especially structure-activity relationship studies into novel CB1 antagonists. SLV330, which is a structural analogue of Ibipinabant, was reported active in animal models related to the regulation of memory, cognition, as well as in addictive behavior. An atom-efficient synthesis of ibipinabant has been reported.

<span class="mw-page-title-main">AM-630</span> Chemical compound

AM-630 (6-Iodopravadoline) is a drug that acts as a potent and selective inverse agonist for the cannabinoid receptor CB2, with a Ki of 32.1 nM at CB2 and 165x selectivity over CB1, at which it acted as a weak partial agonist. It is used in the study of CB2 mediated responses and has been used to investigate the possible role of CB2 receptors in the brain. AM-630 is significant as one of the first indole derived cannabinoid ligands substituted on the 6-position of the indole ring, a position that has subsequently been found to be important in determining affinity and efficacy at both the CB1 and CB2 receptors, and has led to the development of many related derivatives.

<span class="mw-page-title-main">Org 28312</span> Chemical compound

Org 28312 is a drug developed by Organon International which acts as a potent cannabinoid receptor full agonist at both the CB1 and CB2 receptors. It was developed with the aim of finding a water-soluble cannabinoid agonist suitable for intravenous use as an analgesic, but did not proceed to human trials, with the related compound Org 28611 chosen instead due to its better penetration into the brain. The structure-activity relationships of these compounds have subsequently been investigated further leading to the development of a number of more potent analogues, derived by cyclisation around the indole or piperazine rings.

<span class="mw-page-title-main">AZ-11713908</span> Chemical compound

AZ-11713908 is a drug developed by AstraZeneca which is a peripherally selective cannabinoid agonist, acting as a potent agonist at the CB1 receptor and a partial agonist at CB2. It has poor blood–brain barrier penetration, and so while it is an effective analgesic in animal tests, it produces only peripheral effects at low doses, with much weaker symptoms of central effects compared to other cannabinoid drugs such as WIN 55,212-2. Many related benzimidazole-derived cannabinoid ligands are known.

<span class="mw-page-title-main">MN-25</span> Chemical compound

MN-25 (UR-12) is a drug invented by Bristol-Myers Squibb, that acts as a reasonably selective agonist of peripheral cannabinoid receptors. It has moderate affinity for CB2 receptors with a Ki of 11 nM, but 22x lower affinity for the psychoactive CB1 receptors with a Ki of 245 nM. The indole 2-methyl derivative has the ratio of affinities reversed however, with a Ki of 8 nM at CB1 and 29 nM at CB2, which contrasts with the usual trend of 2-methyl derivatives having increased selectivity for CB2 (cf. JWH-018 vs JWH-007, JWH-081 vs JWH-098).

<span class="mw-page-title-main">AM-6545</span> Chemical compound

AM-6545 is a drug which acts as a peripherally selective silent antagonist for the CB1 receptor, and was developed for the treatment of obesity. Other cannabinoid antagonists such as rimonabant have been marketed for this application, but have subsequently been withdrawn from sale because of centrally mediated side effects such as depression and nausea. Because AM-6545 does not cross the blood–brain barrier to any significant extent, it does not produce these kinds of side effects, but has still been shown to effectively reduce appetite and food consumption in animal studies.

<span class="mw-page-title-main">CBS-0550</span> Chemical compound

CBS-0550 is a drug developed by Taisho Pharmaceutical, which acts as a potent and selective cannabinoid CB2 receptor agonist, with 1400x selectivity for CB2 over the related CB1 receptor. Unlike most cannabinoid agonists, CBS-0550 has good solubility in water, and in animal studies it was found to produce analgesic and anti-hyperalgesic effects. A number of related compounds have been developed with similar properties.

<span class="mw-page-title-main">LBP-1 (drug)</span> Chemical compound

LBP-1 is a drug originally developed by Organon for the treatment of neuropathic pain, It acts as a potent and selective cannabinoid receptor agonist, with high potency at both the CB1 and CB2 receptors, but low penetration of the blood–brain barrier. This makes LBP-1 peripherally selective, and while it was effective in animal models of neuropathic pain and allodynia, it did not produce cannabinoid-appropriate responding suggestive of central effects, at any dose tested.

<span class="mw-page-title-main">PTI-2</span> Chemical compound

PTI-2 (SGT-49) is an indole-based synthetic cannabinoid. It is one of few synthetic cannabinoids containing a thiazole group and is closely related to PTI-1. These compounds may be viewed as simplified analogues of indole-3-heterocycle compounds originally developed by Organon and subsequently further researched by Merck.

<span class="mw-page-title-main">QMPSB</span> Chemical compound

QMPSB is an arylsulfonamide-based synthetic cannabinoid that has been sold as a designer drug.

<span class="mw-page-title-main">MCHB-1</span> Chemical compound

MCHB-1 is a benzimidazole derived drug which was researched as an analgesic but never developed for medical use. It acts as a potent agonist of the CB2 receptor, with an EC50 of 0.52nM at CB2, and ~30x selectivity over CB1 (Ki of 110nM at CB1 vs 3.7nM at CB2). It has been sold online as a designer drug, first being identified in Germany in December 2013.

<span class="mw-page-title-main">S-777,469</span> Chemical compound

S-777,469 is a drug developed by Shionogi which is a cannabinoid receptor agonist, with 128x selectivity for the CB2 subtype, having a CB2 affinity of 36nM, and a CB1 affinity over 4600nM.

<span class="mw-page-title-main">JWH-366</span> Chemical compound

JWH-366 (naphthalen-1-yl-(1-pentyl-5-pyridin-3-ylpyrrol-3-yl)methanone) is a synthetic cannabinoid from the naphthoylpyrrole family which acts as an agonist of the CB1 (Ki = 191 ± 12nM) and CB2 (Ki = 24 ± 1nM) receptors, with a strong (~8x) selectivity for the CB2 receptor over the CB1 receptor. JWH-366 was first synthesized in 2006 by John W. Huffman and colleagues to examine the nature of ligand binding to the CB1 receptor.

References

  1. Tam J, Cinar R, Liu J, Godlewski G, Wesley D, Jourdan T, et al. (August 2012). "Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance". Cell Metabolism. 16 (2): 167–179. doi:10.1016/j.cmet.2012.07.002. PMC   3832894 . PMID   22841573.
  2. Godlewski G, Cinar R, Coffey NJ, Liu J, Jourdan T, Mukhopadhyay B, et al. (June 2019). "Targeting Peripheral CB1 Receptors Reduces Ethanol Intake via a Gut-Brain Axis". Cell Metabolism. 29 (6): 1320–1333.e8. doi:10.1016/j.cmet.2019.04.012. PMC   6551287 . PMID   31105045.
  3. Chorvat RJ, Berbaum J, Seriacki K, McElroy JF (October 2012). "JD-5006 and JD-5037: peripherally restricted (PR) cannabinoid-1 receptor blockers related to SLV-319 (Ibipinabant) as metabolic disorder therapeutics devoid of CNS liabilities". Bioorganic & Medicinal Chemistry Letters. 22 (19): 6173–6180. doi:10.1016/j.bmcl.2012.08.004. PMID   22959249.
  4. Chorvat RJ (September 2013). "Peripherally restricted CB1 receptor blockers". Bioorganic & Medicinal Chemistry Letters. 23 (17): 4751–4760. doi:10.1016/j.bmcl.2013.06.066. PMID   23902803.
  5. 1 2 Kale VP, Gibbs S, Taylor JA, Zmarowski A, Novak J, Patton K, et al. (December 2019). "Preclinical toxicity evaluation of JD5037, a peripherally restricted CB1 receptor inverse agonist, in rats and dogs for treatment of nonalcoholic steatohepatitis". Regulatory Toxicology and Pharmacology. 109: 104483. doi:10.1016/j.yrtph.2019.104483. PMC   7017916 . PMID   31580887.