P24 capsid protein

Last updated
The HIV capsid consists of roughly 2000 copies of the p24 protein. The p24 structure is shown in two representations: cartoon (top) and isosurface (bottom) P24 HIV-capsid.png
The HIV capsid consists of roughly 2000 copies of the p24 protein. The p24 structure is shown in two representations: cartoon (top) and isosurface (bottom)

The P24 capsid protein is the most abundant HIV protein with each virus containing approximately 1,500 to 3,000 p24 molecules. [1] It is the major structural protein within the capsid, and it is involved in maintaining the structural integrity of the virus and facilitating various stages of the viral life cycle, including viral entry into host cells and the release of new virus particles. [2] Detection of p24 protein's antigen can be used to identify the presence of HIV in a person's blood, however, more modern tests have taken their place. [3] After approximately 50 days of infection, the p24 antigen is often cleared from the bloodstream entirely. [4]

Contents

Structure

Structure-of-HIV-1-capsid-A-The-structure-of-the-CA-monomer-showing-the-N and C-terminal domain Structure-of-HIV-1-capsid-A-The-structure-of-the-CA-monomer-showing-the-N-terminal (1).png
Structure-of-HIV-1-capsid-A-The-structure-of-the-CA-monomer-showing-the-N and C-terminal domain

P24 has a molecular weight of 24kDa and is encoded by the gag gene. The structure of HIV capsid was determined by X-ray crystallography and cryo-electron microscopy. [5] The p24 capsid protein consists of two domains: the N-terminal domain and the C-terminal domain connected by flexible inter-domain linkers. The N-terminal domain (NTD) is made up of 7 α-helices (H) and β-hairpin. [6] [7] The C-terminal domain (CTD) has 4 α-helices and an 11-residue unstructured region. [8] [9] The N-terminal domain (NTD) facilitates contacts within the hexamer, while the C-terminal domain (CTD) forms dimers that bind to adjacent hexamers. [10] Each hexamer contains a size-selective pore surrounded by six positively charged arginine residues, and the pore is covered by a β-hairpin that can undergo conformational changes, which has both open and closed conformations. [11] At the center of the hexamers lies an IP6 molecule which stabilizes the tertiary structure of the molecule. Additionally, the C-terminal domain includes a Major Homology Region (MHR) spanning amino acids 153 to 172 with 20 highly conserved amino acids. [11] Moreover, the N-terminal domain features a loop (amino acids 85–93) that interacts with the protein cyclophilin A (Cyp A).

Function

P24 is a structural protein that plays a crucial role in the formation and stability of the viral capsid, which protects the viral RNA. p24 capsid protein’s roles in the HIV replicative process are summarized as follows:[ citation needed ]

P24 HIV capsid as a therapeutic target

Cyclosporine, an immunosuppressant drug designed to prevent organ transplant rejection, has been shown to inhibit infection in HIV-1 positive people. [12] Cyclosporine acts as a competitive inhibitor to the capsid protein’s association with CypA, a cellular protein. CypA has been shown to be important for HIV’s infectivity.

The HIV-1 p24 capsid protein plays crucial roles throughout the replication cycle, making it an attractive therapeutic target. Unlike the viral enzymes (protease, reverse transcriptase and integrase) that are currently targeted by small-molecule antiretroviral drugs, p24 capsid proteins operate through protein-protein interactions. Capsid inhibitors, such as Lenacapavir and GS-6207, interfere with the activities of the HIV capsid protein and underwent evaluation in phase-1 clinical trials as monotherapies. [13] [14] They demonstrated anti-viral activity against all subtypes with no cross-resistance with current antiretroviral drugs. [13] [14] These findings support therapies aimed at disrupting the functions of the HIV capsid protein.

P24 can induce cellular immune responses and has been included in some vaccine strategies. [3]

See also

HIV vaccine

Diagnosis

P24 is a target for the immune system, and antibodies against p24 are used in diagnostic tests to detect the presence of HIV antibodies. Fourth-generation HIV immunoassays detect viral p24 protein in the blood and patient antibodies against the virus. Previous generation tests relied on detecting patient antibodies alone; it takes about 3–4 weeks for the earliest antibodies to be detected. The p24 protein can be detected in a patient's blood as early as 2 weeks after infection, further reducing the window period necessary to accurately detect the HIV status of the patient. [15]

Related Research Articles

<span class="mw-page-title-main">Capsid</span> Protein shell of a virus

A capsid is the protein shell of a virus, enclosing its genetic material. It consists of several oligomeric (repeating) structural subunits made of protein called protomers. The observable 3-dimensional morphological subunits, which may or may not correspond to individual proteins, are called capsomeres. The proteins making up the capsid are called capsid proteins or viral coat proteins (VCP). The capsid and inner genome is called the nucleocapsid.

<span class="mw-page-title-main">HIV</span> Human retrovirus, cause of AIDS

The human immunodeficiency viruses (HIV) are two species of Lentivirus that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive. Without treatment, the average survival time after infection with HIV is estimated to be 9 to 11 years, depending on the HIV subtype.

<span class="mw-page-title-main">Integrase</span> Class of enzymes

Retroviral integrase (IN) is an enzyme produced by a retrovirus that integrates its genetic information into that of the host cell it infects. Retroviral INs are not to be confused with phage integrases (recombinases) used in biotechnology, such as λ phage integrase, as discussed in site-specific recombination.

<span class="mw-page-title-main">Antiviral drug</span> Medication used to treat a viral infection

Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Antiviral drugs are a class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs, or antiviral drugs based on monoclonal antibodies. Most antivirals are considered relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from virucides, which are not medication but deactivate or destroy virus particles, either inside or outside the body. Natural virucides are produced by some plants such as eucalyptus and Australian tea trees.

<span class="mw-page-title-main">HIV vaccine development</span> In-progress vaccinations that may prevent or treat HIV infections

An HIV vaccine is a potential vaccine that could be either a preventive vaccine or a therapeutic vaccine, which means it would either protect individuals from being infected with HIV or treat HIV-infected individuals.

The management of HIV/AIDS normally includes the use of multiple antiretroviral drugs as a strategy to control HIV infection. There are several classes of antiretroviral agents that act on different stages of the HIV life-cycle. The use of multiple drugs that act on different viral targets is known as highly active antiretroviral therapy (HAART). HAART decreases the patient's total burden of HIV, maintains function of the immune system, and prevents opportunistic infections that often lead to death. HAART also prevents the transmission of HIV between serodiscordant same-sex and opposite-sex partners so long as the HIV-positive partner maintains an undetectable viral load.

<span class="mw-page-title-main">Hemagglutinin (influenza)</span> Hemagglutinin of influenza virus

Influenza hemagglutinin (HA) or haemagglutinin[p] is a homotrimeric glycoprotein found on the surface of influenza viruses and is integral to its infectivity.

<span class="mw-page-title-main">TRIM5alpha</span>

Tripartite motif-containing protein 5 also known as RING finger protein 88 is a protein that in humans is encoded by the TRIM5 gene. The alpha isoform of this protein, TRIM5α, is a retrovirus restriction factor, which mediates a species-specific early block to retrovirus infection.

Virus-like particles (VLPs) are molecules that closely resemble viruses, but are non-infectious because they contain no viral genetic material. They can be naturally occurring or synthesized through the individual expression of viral structural proteins, which can then self assemble into the virus-like structure. Combinations of structural capsid proteins from different viruses can be used to create recombinant VLPs. Both in-vivo assembly and in-vitro assembly have been successfully shown to form virus-like particles. VLPs derived from the Hepatitis B virus (HBV) and composed of the small HBV derived surface antigen (HBsAg) were described in 1968 from patient sera. VLPs have been produced from components of a wide variety of virus families including Parvoviridae, Retroviridae, Flaviviridae, Paramyxoviridae and bacteriophages. VLPs can be produced in multiple cell culture systems including bacteria, mammalian cell lines, insect cell lines, yeast and plant cells.

<span class="mw-page-title-main">CD4</span> Marker on immune cells

In molecular biology, CD4 is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as helper T cells, monocytes, macrophages, and dendritic cells. It was discovered in the late 1970s and was originally known as leu-3 and T4 before being named CD4 in 1984. In humans, the CD4 protein is encoded by the CD4 gene.

The genome and proteins of HIV (human immunodeficiency virus) have been the subject of extensive research since the discovery of the virus in 1983. "In the search for the causative agent, it was initially believed that the virus was a form of the Human T-cell leukemia virus (HTLV), which was known at the time to affect the human immune system and cause certain leukemias. However, researchers at the Pasteur Institute in Paris isolated a previously unknown and genetically distinct retrovirus in patients with AIDS which was later named HIV." Each virion comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses two copies of the single-stranded RNA genome and several enzymes. The discovery of the virus itself occurred two years following the report of the first major cases of AIDS-associated illnesses.

<span class="mw-page-title-main">Envelope glycoprotein GP120</span> Glycoprotein exposed on the surface of the HIV virus

Envelope glycoprotein GP120 is a glycoprotein exposed on the surface of the HIV envelope. It was discovered by Professors Tun-Hou Lee and Myron "Max" Essex of the Harvard School of Public Health in 1984. The 120 in its name comes from its molecular weight of 120 kDa. Gp120 is essential for virus entry into cells as it plays a vital role in attachment to specific cell surface receptors. These receptors are DC-SIGN, Heparan Sulfate Proteoglycan and a specific interaction with the CD4 receptor, particularly on helper T-cells. Binding to CD4 induces the start of a cascade of conformational changes in gp120 and gp41 that lead to the fusion of the viral membrane with the host cell membrane. Binding to CD4 is mainly electrostatic although there are van der Waals interactions and hydrogen bonds.

<span class="mw-page-title-main">Gp41</span> Subunit of the envelope protein complex of retroviruses

Gp41 also known as glycoprotein 41 is a subunit of the envelope protein complex of retroviruses, including human immunodeficiency virus (HIV). Gp41 is a transmembrane protein that contains several sites within its ectodomain that are required for infection of host cells. As a result of its importance in host cell infection, it has also received much attention as a potential target for HIV vaccines.

<span class="mw-page-title-main">APOBEC3G</span> Protein and coding gene in humans

APOBEC3G is a human enzyme encoded by the APOBEC3G gene that belongs to the APOBEC superfamily of proteins. This family of proteins has been suggested to play an important role in innate anti-viral immunity. APOBEC3G belongs to the family of cytidine deaminases that catalyze the deamination of cytidine to uridine in the single stranded DNA substrate. The C-terminal domain of A3G renders catalytic activity, several NMR and crystal structures explain the substrate specificity and catalytic activity.

Group-specific antigen, or gag, is the polyprotein that contains the core structural proteins of an Ortervirus. It was named as such because scientists used to believe it was antigenic. Now it is known that it makes up the inner shell, not the envelope exposed outside. It makes up all the structural units of viral conformation and provides supportive framework for mature virion.

CD4 immunoadhesin is a recombinant fusion protein consisting of a combination of CD4 and the fragment crystallizable region, similarly known as immunoglobulin. It belongs to the antibody (Ig) gene family. CD4 is a surface receptor for human immunodeficiency virus (HIV). The CD4 immunoadhesin molecular fusion allow the protein to possess key functions from each independent subunit. The CD4 specific properties include the gp120-binding and HIV-blocking capabilities. Properties specific to immunoglobulin are the long plasma half-life and Fc receptor binding. The properties of the protein means that it has potential to be used in AIDS therapy as of 2017. Specifically, CD4 immunoadhesin plays a role in antibody-dependent cell-mediated cytotoxicity (ADCC) towards HIV-infected cells. While natural anti-gp120 antibodies exhibit a response towards uninfected CD4-expressing cells that have a soluble gp120 bound to the CD4 on the cell surface, CD4 immunoadhesin, however, will not exhibit a response. One of the most relevant of these possibilities is its ability to cross the placenta.

Tat (HIV)

In molecular biology, Tat is a protein that is encoded for by the tat gene in HIV-1. Tat is a regulatory protein that drastically enhances the efficiency of viral transcription. Tat stands for "Trans-Activator of Transcription". The protein consists of between 86 and 101 amino acids depending on the subtype. Tat vastly increases the level of transcription of the HIV dsDNA. Before Tat is present, a small number of RNA transcripts will be made, which allow the Tat protein to be produced. Tat then binds to cellular factors and mediates their phosphorylation, resulting in increased transcription of all HIV genes, providing a positive feedback cycle. This in turn allows HIV to have an explosive response once a threshold amount of Tat is produced, a useful tool for defeating the body's response.

<span class="mw-page-title-main">Lenacapavir</span> Antiretroviral medication

Lenacapavir, sold under the brand name Sunlenca, is an antiretroviral medication used to treat HIV/AIDS. It is taken by mouth or by subcutaneous injection.

Bacteriophage AP205 is a plaque-forming bacteriophage that infects Acinetobacter bacteria. Bacteriophage AP205 is a protein-coated virus with a positive single-stranded RNA genome. It is a member of the family Fiersviridae, consisting of particles that infect Gram-negative bacteria such as E. coli.

In the management of HIV/AIDS, HIV capsid inhibitors are antiretroviral medicines that target the capsid shell of the virus. Most current antiretroviral drugs used to treat HIV do not directly target the viral capsid. These have also been termed "Capsid-targeting Antivirals", "Capsid Effectors", and "Capsid Assembly Modulators (CAMs)". Because of this, drugs that specifically inhibit the HIV capsid are being developed in order to reduce the replication of HIV, and treat infections that have become resistant to current antiretroviral therapies.

References

  1. Summers MF, Henderson LE, Chance MR, Bess JW, South TL, Blake PR, et al. (May 1992). "Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1". Protein Science. 1 (5): 563–574. doi:10.1002/pro.5560010502. PMC   2142235 . PMID   1304355.
  2. Rossi E, Meuser ME, Cunanan CJ, Cocklin S (January 2021). "Structure, Function, and Interactions of the HIV-1 Capsid Protein". Life. 11 (2): 100. Bibcode:2021Life...11..100R. doi: 10.3390/life11020100 . PMC   7910843 . PMID   33572761.
  3. 1 2 Larijani MS, Sadat SM, Bolhassani A, Pouriayevali MH, Bahramali G, Ramezani A (2019). "In Silico Design and Immunologic Evaluation of HIV-1 p24-Nef Fusion Protein to Approach a Therapeutic Vaccine Candidate". Current HIV Research. 16 (5): 322–337. doi:10.2174/1570162x17666190102151717. PMC   6446525 . PMID   30605062.
  4. Hurt CB, Nelson JA, Hightow-Weidman LB, Miller WC (December 2017). "Selecting an HIV Test: A Narrative Review for Clinicians and Researchers". Sexually Transmitted Diseases. 44 (12): 739–746. doi:10.1097/OLQ.0000000000000719. PMC   5718364 . PMID   29140890.
  5. Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, et al. (May 2013). "Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics". Nature. 497 (7451): 643–646. Bibcode:2013Natur.497..643Z. doi:10.1038/nature12162. PMC   3729984 . PMID   23719463.
  6. Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI (July 1996). "Structure of the amino-terminal core domain of the HIV-1 capsid protein". Science. 273 (5272): 231–235. Bibcode:1996Sci...273..231G. doi:10.1126/science.273.5272.231. PMID   8662505. S2CID   5960953.
  7. Momany C, Kovari LC, Prongay AJ, Keller W, Gitti RK, Lee BM, et al. (September 1996). "Crystal structure of dimeric HIV-1 capsid protein". Nature Structural Biology. 3 (9): 763–770. doi:10.1038/nsb0996-763. PMID   8784350. S2CID   33672057.
  8. Du S, Betts L, Yang R, Shi H, Concel J, Ahn J, et al. (February 2011). "Structure of the HIV-1 full-length capsid protein in a conformationally trapped unassembled state induced by small-molecule binding". Journal of Molecular Biology. 406 (3): 371–386. doi:10.1016/j.jmb.2010.11.027. PMC   3194004 . PMID   21146540.
  9. Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, et al. (October 1997). "Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein". Science. 278 (5339): 849–853. Bibcode:1997Sci...278..849G. doi:10.1126/science.278.5339.849. PMID   9346481.
  10. Tan A, Pak AJ, Morado DR, Voth GA, Briggs JA (January 2021). "Immature HIV-1 assembles from Gag dimers leaving partial hexamers at lattice edges as potential substrates for proteolytic maturation". Proceedings of the National Academy of Sciences of the United States of America. 118 (3). Bibcode:2021PNAS..11820054T. doi: 10.1073/pnas.2020054118 . PMC   7826355 . PMID   33397805.
  11. 1 2 Obr M, Kräusslich HG (July 2018). "The secrets of the stability of the HIV-1 capsid". eLife. 7: e38895. doi: 10.7554/eLife.38895 . PMC   6067877 . PMID   30063007.
  12. Sokolskaja, Elena; Olivari, Silvia; Zufferey, Madeleine; Strambio-De-Castillia, Caterina; Pizzato, Massimo; Luban, Jeremy (May 2010). "Cyclosporine Blocks Incorporation of HIV-1 Envelope Glycoprotein into Virions". Journal of Virology. 84 (9): 4851–4855. doi:10.1128/JVI.01699-09. ISSN   0022-538X. PMC   2863729 . PMID   20181694.
  13. 1 2 Link JO, Rhee MS, Tse WC, Zheng J, Somoza JR, Rowe W, et al. (August 2020). "Clinical targeting of HIV capsid protein with a long-acting small molecule". Nature. 584 (7822): 614–618. Bibcode:2020Natur.584..614L. doi:10.1038/s41586-020-2443-1. PMC   8188729 . PMID   32612233.
  14. 1 2 Dvory-Sobol H, Shaik N, Callebaut C, Rhee MS (January 2022). "Lenacapavir: a first-in-class HIV-1 capsid inhibitor". Current Opinion in HIV and AIDS. 17 (1): 15–21. doi: 10.1097/COH.0000000000000713 . PMID   34871187. S2CID   244940471.
  15. Constantine N (February 1998). "HIV Antibody Assays". HIV InSite Knowledge Base. Archived from the original on 2001-06-25 via hivinsite.ucsf.edu.

Further reading