HA-tag

Last updated
12CA5 Fv-clasp fragment (green, cyan) with its antigen peptide, YPYDVPDYA (magenta), which is used as HA tag. Image created with PyMOL from PDB: 5XCS . HA tag.png
12CA5 Fv-clasp fragment (green, cyan) with its antigen peptide, YPYDVPDYA (magenta), which is used as HA tag. Image created with PyMOL from PDB: 5XCS .

Human influenza hemagglutinin (HA) is a surface glycoprotein required for the infectivity of the human influenza virus. The HA-tag is derived from the HA-molecule corresponding to amino acids 98-106. HA-tag has been extensively used as a general epitope tag in expression vectors. [1] Many recombinant proteins have been engineered to express the HA-tag, which does not generally appear to interfere with the bioactivity or the biodistribution of the recombinant protein. This tag facilitates the detection, isolation and purification of the protein of interest. [2]

Contents

The HA-tag is not suitable for detection or purification of proteins from apoptotic cells since it is cleaved by Caspase-3 and / or Caspase-7 after its sequence DVPD, causing it to lose its immunoreactivity. [3] Labeling of endogenous proteins with HA-tag using CRISPR was recently accomplished in-vivo in differentiated neurons. [4]

Sequence

The DNA sequences for the HA-tag include: 5'-TAC-CCA-TAC-GAT-GTT-CCA-GAT-TAC-GCT-3' or 5'-TAT-CCA-TAT-GAT-GTT-CCA-GAT-TAT-GCT-3'. The resulting amino acid sequence is YPYDVPDYA (Tyr-Pro-Tyr-Asp-Val-Pro-Asp-Tyr-Ala).[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Adenylyl cyclase</span> Enzyme with key regulatory roles in most cells

Adenylate cyclase is an enzyme with systematic name ATP diphosphate-lyase . It catalyzes the following reaction:

An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that binds to the epitope is called a paratope. Although epitopes are usually non-self proteins, sequences derived from the host that can be recognized are also epitopes.

<span class="mw-page-title-main">Protein splicing</span> The post-translational removal of peptide sequences from within a protein sequence

Protein splicing is an intramolecular reaction of a particular protein in which an internal protein segment is removed from a precursor protein with a ligation of C-terminal and N-terminal external proteins on both sides. The splicing junction of the precursor protein is mainly a cysteine or a serine, which are amino acids containing a nucleophilic side chain. The protein splicing reactions which are known now do not require exogenous cofactors or energy sources such as adenosine triphosphate (ATP) or guanosine triphosphate (GTP). Normally, splicing is associated only with pre-mRNA splicing. This precursor protein contains three segments—an N-extein followed by the intein followed by a C-extein. After splicing has taken place, the resulting protein contains the N-extein linked to the C-extein; this splicing product is also termed an extein.

Protein tags are peptide sequences genetically grafted onto a recombinant protein. Tags are attached to proteins for various purposes. They can be added to either end of the target protein, so they are either C-terminus or N-terminus specific or are both C-terminus and N-terminus specific. Some tags are also inserted at sites within the protein of interest; they are known as internal tags.

FLAG-tag, or FLAG octapeptide, or FLAG epitope, is a peptide protein tag that can be added to a protein using recombinant DNA technology, having the sequence DYKDDDDK. It is one of the most specific tags and it is an artificial antigen to which specific, high affinity monoclonal antibodies have been developed and hence can be used for protein purification by affinity chromatography and also can be used for locating proteins within living cells. FLAG-tag has been used to separate recombinant, overexpressed protein from wild-type protein expressed by the host organism. FLAG-tag can also be used in the isolation of protein complexes with multiple subunits, because FLAG-tag's mild purification procedure tends not to disrupt such complexes. FLAG-tag-based purification has been used to obtain proteins of sufficient purity and quality to carry out 3D structure determination by x-ray crystallography.

Michael Howard Wigler is an American molecular biologist who has directed a laboratory at Cold Spring Harbor Laboratory since 1978 and is a member of the National Academy of Sciences. He is best known for developing methods to genetically engineer animal cells and his contributions to cancer, genomics and autism genetics.

<span class="mw-page-title-main">ADCY6</span> Protein-coding gene in humans

Adenylyl cyclase type 6 is an enzyme that in humans is encoded by the ADCY6 gene.

<span class="mw-page-title-main">ADCY3</span> Protein-coding gene in the species Homo sapiens

Adenylyl cyclase type 3 is an enzyme that in humans is encoded by the ADCY3 gene.

<span class="mw-page-title-main">ADCY1</span> Protein-coding gene in the species Homo sapiens

Adenylyl cyclase type 1 is an enzyme that in humans is encoded by the ADCY1 gene.

<span class="mw-page-title-main">CAP1</span> Gene of the species Homo sapiens

Adenylyl cyclase-associated protein 1 is an enzyme that in humans is encoded by the CAP1 gene.

<span class="mw-page-title-main">ADCY2</span> Protein-coding gene in the species Homo sapiens

Adenylyl cyclase type 2 is an enzyme typically expressed in the brain of humans, that is encoded by the ADCY2 gene. It belongs to the adenylyl cyclase class-3 or guanylyl cyclase family because it contains two guanylate cyclase domains. ADCY2 is one of ten different mammalian isoforms of adenylyl cyclases. ADCY2 can be found on chromosome 5 and the "MIR2113-POU3F2" region of chromosome 6, with a length of 1091 amino-acids. An essential cofactor for ADCY2 is magnesium; two ions bind per subunit.

<span class="mw-page-title-main">ADCY7</span> Protein-coding gene in the species Homo sapiens

Adenylyl cyclase type 7 is an enzyme that in humans is encoded by the ADCY7 gene.

<span class="mw-page-title-main">ADCY9</span> Protein-coding gene in the species Homo sapiens

Adenylyl cyclase type 9 is an enzyme that in humans is encoded by the ADCY9 gene.

<span class="mw-page-title-main">ADCY8</span> Protein-coding gene in the species Homo sapiens

Adenylyl cyclase type 8 is an enzyme that in humans is encoded by the ADCY8 gene.

<span class="mw-page-title-main">ADCY4</span> Protein-coding gene in the species Homo sapiens

Adenylyl cyclase type 4 is an enzyme that in humans is encoded by the ADCY4 gene.

In molecular cloning, a vector is any particle used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors are an origin of replication, a multicloning site, and a selectable marker.

<span class="mw-page-title-main">RASSF9</span> Protein-coding gene in the species Homo sapiens

Ras association domain-containing protein 9 (RASSF9), also known as PAM COOH-terminal interactor protein 1 (PCIP1) or peptidylglycine alpha-amidating monooxygenase COOH-terminal interactor (PAMCI) is a protein that in humans is encoded by the RASSF9 gene.

<span class="mw-page-title-main">Cyclase-associated protein family</span>

In molecular biology, the cyclase-associated protein family (CAP) is a family of highly conserved actin-binding proteins present in a wide range of organisms including yeast, flies, plants, and mammals. CAPs are multifunctional proteins that contain several structural domains. CAP is involved in species-specific signalling pathways. In Drosophila, CAP functions in Hedgehog-mediated eye development and in establishing oocyte polarity. In Dictyostelium discoideum, CAP is involved in microfilament reorganisation near the plasma membrane in a PIP2-regulated manner and is required to perpetuate the cAMP relay signal to organise fruitbody formation. In plants, CAP is involved in plant signalling pathways required for co-ordinated organ expansion. In yeast, CAP is involved in adenylate cyclase activation, as well as in vesicle trafficking and endocytosis. In both yeast and mammals, CAPs appear to be involved in recycling G-actin monomers from ADF/cofilins for subsequent rounds of filament assembly. In mammals, there are two different CAPs that share 64% amino acid identity.

Saccharopepsin is an enzyme. This enzyme catalyses the following chemical reaction

The NE-tag is a synthetic peptide tag designed as an epitope tag for detection, quantification and purification of recombinant protein. This patented peptide sequence is composed of eighteen hydrophilic amino acids. This short peptide does not adopt any significant homology to any existing proteins found in nature. This synthetic NE peptide adopts random coil conformation and showing strong immunogenicity. This is advantageous to offer stringent specificity to the NE-tagged proteins, which are readily to be detected, quantitated, and purified.

References

  1. Field J, Nikawa J, Broek D, MacDonald B, Rodgers L, Wilson IA, Lerner RA, Wigler M (1988). "Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method". Mol Cell Biol. 8 (5): 2159–65. doi:10.1128/mcb.8.5.2159-2165.1988. PMC   363397 . PMID   2455217.
  2. "Anti-HA Tag Antibody Updated 28/10/2021". Merck Millipore.
  3. Schembri L, Dalibart R, Tomasello F, Legembre P, Ichas F, De Giorgi F (February 2007). "The HA tag is cleaved and loses immunoreactivity during apoptosis". Nature Methods. 4 (2): 107–8. doi:10.1038/nmeth0207-107. PMID   17264856. S2CID   32173039.
  4. Mikuni T, Nishiyama J, Sun Y, Kamasawa N, Yasuda R (2016). "High Throughput, High Resolution Mapping of Protein Localization in Mammalian Brain by In Vivo Genome Editing". Cell. 165 (7): 1803–1817. doi:10.1016/j.cell.2016.04.044. PMC   4912470 . PMID   27180908.

Further reading