Birth process

Last updated
A birth process with birth rates
l
0
,
l
1
,
l
2
,
.
.
.
{\displaystyle \lambda _{0},\lambda _{1},\lambda _{2},...}
. Birth process.svg
A birth process with birth rates .

In probability theory, a birth process or a pure birth process [1] is a special case of a continuous-time Markov process and a generalisation of a Poisson process. It defines a continuous process which takes values in the natural numbers and can only increase by one (a "birth") or remain unchanged. This is a type of birth–death process with no deaths. The rate at which births occur is given by an exponential random variable whose parameter depends only on the current value of the process

Contents

Definition

Birth rates definition

A birth process with birth rates and initial value is a minimal right-continuous process such that and the interarrival times are independent exponential random variables with parameter . [2]

Infinitesimal definition

A birth process with rates and initial value is a process such that:

(The third and fourth conditions use little o notation.)

These conditions ensure that the process starts at , is non-decreasing and has independent single births continuously at rate , when the process has value . [3]

Continuous-time Markov chain definition

A birth process can be defined as a continuous-time Markov process (CTMC) with the non-zero Q-matrix entries and initial distribution (the random variable which takes value with probability 1). [4]

Variations

Some authors require that a birth process start from 0 i.e. that , [3] while others allow the initial value to be given by a probability distribution on the natural numbers. [2] The state space can include infinity, in the case of an explosive birth process. [2] The birth rates are also called intensities. [3]

Properties

As for CTMCs, a birth process has the Markov property. The CTMC definitions for communicating classes, irreducibility and so on apply to birth processes. By the conditions for recurrence and transience of a birth–death process, [5] any birth process is transient. The transition matrices of a birth process satisfy the Kolmogorov forward and backward equations.

The backwards equations are: [6]

(for )

The forward equations are: [7]

(for )
(for )

From the forward equations it follows that: [7]

(for )
(for )

Unlike a Poisson process, a birth process may have infinitely many births in a finite amount of time. We define and say that a birth process explodes if is finite. If then the process is explosive with probability 1; otherwise, it is non-explosive with probability 1 ("honest"). [8] [9]

Examples

A Poisson process is a special case of a birth process. Poisson process.svg
A Poisson process is a special case of a birth process.

A Poisson process is a birth process where the birth rates are constant i.e. for some . [3]

Simple birth process

A simple birth process, where birth rates are equal to the size of the current population. Simple birth process.svg
A simple birth process, where birth rates are equal to the size of the current population.

A simple birth process is a birth process with rates . [10] It models a population in which each individual gives birth repeatedly and independently at rate . Udny Yule studied the processes, so they may be known as Yule processes. [11]

The number of births in time from a simple birth process of population is given by: [3]

In exact form, the number of births is the negative binomial distribution with parameters and . For the special case , this is the geometric distribution with success rate . [12]

The expectation of the process grows exponentially; specifically, if then . [10]

A simple birth process with immigration is a modification of this process with rates . This models a population with births by each population member in addition to a constant rate of immigration into the system. [3]

Notes

Related Research Articles

<span class="mw-page-title-main">Markov chain</span> Random process independent of past history

A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs now." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC). It is named after the Russian mathematician Andrey Markov.

Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.

A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to the least value of a set of exponential random variables, one for each possible state it can move to, with the parameters determined by the current state.

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

In probability theory the hypoexponential distribution or the generalized Erlang distribution is a continuous distribution, that has found use in the same fields as the Erlang distribution, such as queueing theory, teletraffic engineering and more generally in stochastic processes. It is called the hypoexponetial distribution as it has a coefficient of variation less than one, compared to the hyper-exponential distribution which has coefficient of variation greater than one and the exponential distribution which has coefficient of variation of one.

Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of rewards incurred at each holding time, which are IID but need not be independent of the holding times.

The birth–death process is a special case of continuous-time Markov process where the state transitions are of only two types: "births", which increase the state variable by one and "deaths", which decrease the state by one. It was introduced by William Feller. The model's name comes from a common application, the use of such models to represent the current size of a population where the transitions are literal births and deaths. Birth–death processes have many applications in demography, queueing theory, performance engineering, epidemiology, biology and other areas. They may be used, for example, to study the evolution of bacteria, the number of people with a disease within a population, or the number of customers in line at the supermarket.

In probability theory, Bernstein inequalities give bounds on the probability that the sum of random variables deviates from its mean. In the simplest case, let X1, ..., Xn be independent Bernoulli random variables taking values +1 and −1 with probability 1/2, then for every positive ,

In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed.

In actuarial science and applied probability, ruin theory uses mathematical models to describe an insurer's vulnerability to insolvency/ruin. In such models key quantities of interest are the probability of ruin, distribution of surplus immediately prior to ruin and deficit at time of ruin.

In probability theory, a Markov kernel is a map that in the general theory of Markov processes plays the role that the transition matrix does in the theory of Markov processes with a finite state space.

In mathematics, a càdlàg, RCLL, or corlol function is a function defined on the real numbers that is everywhere right-continuous and has left limits everywhere. Càdlàg functions are important in the study of stochastic processes that admit jumps, unlike Brownian motion, which has continuous sample paths. The collection of càdlàg functions on a given domain is known as Skorokhod space.

In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian, service times have a General distribution and there is a single server. The model name is written in Kendall's notation, and is an extension of the M/M/1 queue, where service times must be exponentially distributed. The classic application of the M/G/1 queue is to model performance of a fixed head hard disk.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/∞ queue is a multi-server queueing model where every arrival experiences immediate service and does not wait. In Kendall's notation it describes a system where arrivals are governed by a Poisson process, there are infinitely many servers, so jobs do not need to wait for a server. Each job has an exponentially distributed service time. It is a limit of the M/M/c queue model where the number of servers c becomes very large.

In queueing theory, a discipline within the mathematical theory of probability, a heavy traffic approximation is the matching of a queueing model with a diffusion process under some limiting conditions on the model's parameters. The first such result was published by John Kingman who showed that when the utilisation parameter of an M/M/1 queue is near 1 a scaled version of the queue length process can be accurately approximated by a reflected Brownian motion.

In queueing theory, a discipline within the mathematical theory of probability, the G/M/1 queue represents the queue length in a system where interarrival times have a general distribution and service times for each job have an exponential distribution. The system is described in Kendall's notation where the G denotes a general distribution, M the exponential distribution for service times and the 1 that the model has a single server.

<span class="mw-page-title-main">Poisson point process</span> Type of random mathematical object

In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is also called a Poisson random measure, Poisson random point field or Poisson point field. When the process is defined on the real line, it is often called simply the Poisson process.

The intensity of a counting process is a measure of the rate of change of its predictable part. If a stochastic process is a counting process, then it is a submartingale, and in particular its Doob-Meyer decomposition is

In the mathematical theory of probability, Blumenthal's zero–one law, named after Robert McCallum Blumenthal, is a statement about the nature of the beginnings of right continuous Feller process. Loosely, it states that any right continuous Feller process on starting from deterministic point has also deterministic initial movement.

In probability theory, a transition-rate matrix is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.

References