Allyl group

Last updated
Structure of the allyl group Allyl.svg
Structure of the allyl group

In organic chemistry, an allyl group is a substituent with the structural formula −CH2−HC=CH2. It consists of a methylene bridge (−CH2) attached to a vinyl group (−CH=CH2). [1] [2] The name is derived from the scientific name for garlic, Allium sativum. In 1844, Theodor Wertheim isolated an allyl derivative from garlic oil and named it "Schwefelallyl". [3] [4] The term allyl applies to many compounds related to H2C=CH−CH2, some of which are of practical or of everyday importance, for example, allyl chloride.

Contents

Allylation is any chemical reaction that adds an allyl group to a substrate. [1]

Nomenclature

The free radical pathway for the first phase of the oxidative rancidification of fats Lipid peroxidation.svg
The free radical pathway for the first phase of the oxidative rancidification of fats

A site adjacent to the unsaturated carbon atom is called the allylic position or allylic site. A group attached at this site is sometimes described as allylic. Thus, CH2=CHCH2OH "has an allylic hydroxyl group". Allylic C−H bonds are about 15% weaker than the C−H bonds in ordinary sp3 carbon centers and are thus more reactive.

Benzylic and allylic are related in terms of structure, bond strength, and reactivity. Other reactions that tend to occur with allylic compounds are allylic oxidations, ene reactions, and the Tsuji–Trost reaction. Benzylic groups are related to allyl groups; both show enhanced reactivity.

Pentadienyl group

A CH2 group connected to two vinyl groups is said to be doubly allylic. The bond dissociation energy of C−H bonds on a doubly allylic centre is about 10% less than the bond dissociation energy of a C−H bond that is singly allylic. The weakened C−H bonds is reflected in the easy oxidation of compounds containing 1,4-pentadiene (C=C−CH2−C=C) linkages. Some polyunsaturated fatty acids feature this pentadiene group: linoleic acid, α-linolenic acid, and arachidonic acid. They are susceptible to a range of reactions with oxygen (O2), starting with lipid peroxidation. Products include fatty acid hydroperoxides, epoxy-hydroxy polyunsaturated fatty acids, jasmonates, divinylether fatty acids, and leaf aldehydes. Some of these derivatives are signallng molecules, some are used in plant defense (antifeedants), some are precursors to other metabolites that are used by the plant. [5]

One practical consequence of their high reactivity is that polyunsaturated fatty acids have poor shelf life owing to their tendency toward autoxidation, leading, in the case of edibles, to rancidification. Metals accelerate the degradation. These fats tend to polymerize, forming semisolids. This reactivity pattern is fundamental to the film-forming behavior of the "drying oils", which are components of oil paints and varnishes.

A representative triglyceride found in linseed oil features groups with both doubly allylic
CH2 sites (linoleic acid and alpha-linolenic acid) and a singly allylic site (oleic acid) Triglyceride unsaturated Structural Formulae V.1.png
A representative triglyceride found in linseed oil features groups with both doubly allylic CH2 sites (linoleic acid and alpha-linolenic acid) and a singly allylic site (oleic acid)

Homoallylic

The term homoallylic refers to the position on a carbon skeleton next to an allylic position. In but-3-enyl chloride CH2=CHCH2CH2Cl, the chloride is homoallylic because it is bonded to the homoallylic site.

The allylic, homoallylic and doubly allylic sites are highlighted in red Allyl,homo,doubly.png
The allylic, homoallylic and doubly allylic sites are highlighted in red

Bonding

The allyl group is widely encountered in organic chemistry. [1] Allylic radicals, anions, and cations are often discussed as intermediates in reactions. All feature three contiguous sp²-hybridized carbon centers and all derive stability from resonance. [6] Each species can be presented by two resonance structures with the charge or unpaired electron distributed at both 1,3 positions.

Resonance structure of the allyl anion. The cation is identical, but carries an opposite-sign charge. Allyl anion.svg
Resonance structure of the allyl anion. The cation is identical, but carries an opposite-sign charge.

In terms of MO theory, the MO diagram has three molecular orbitals: the first one bonding, the second one non-bonding, and the higher energy orbital is antibonding. [2]

MO diagram for allyl p orbitals. In the radical (shown), the intermediate Ps2 orbital is singly occupied; in the cation, unoccupied; and in the anion, full. AllylMO.png
MO diagram for allyl π orbitals. In the radical (shown), the intermediate Ψ2 orbital is singly occupied; in the cation, unoccupied; and in the anion, full.

[8]

Reactions and applications

This heightened reactivity of allylic groups has many practical consequences. The sulfur vulcanization or various rubbers exploits the conversion of allylic CH2 groups into CH−Sx−CH crosslinks. Similarly drying oils such as linseed oil crosslink via oxygenation of allylic (or doubly allylic) sites. This crosslinking underpins the properties of paints and the spoilage of foods by rancidification.

The industrial production of acrylonitrile by ammoxidation of propene exploits the easy oxidation of the allylic C−H centers:

An estimated 800,000 tonnes (1997) of allyl chloride is produced by the chlorination of propylene:

It is the precursor to allyl alcohol and epichlorohydrin.

Allylation

Allylation is the attachment of an allyl group to a substrate, usually another organic compound. Classically, allylation involves the reaction of a carbanion with allyl chloride. Alternatives include carbonyl allylation with allylmetallic reagents, such as allyltrimethylsilane, [9] [10] [11] or the iridium-catalyzed Krische allylation.

Allylation can be effected also by conjugate addition: the addition of an allyl group to the beta-position of an enone. The Hosomi-Sakurai reaction is a common method for conjugate allylation. [12]

insert a caption here Carbonyl Allylation Scheme 4.png
insert a caption here

Oxidation

Allylic C-H bonds are susceptible to oxidation. [13] One commercial application of allylic oxidation is the synthesis of nootkatone, the fragrance of grapefruit, from valencene, a more abundantly available sesquiterpenoid: [14]

The conversion of valencene to nootkatone is an example of allylic oxidation. ValenceneToNootkatone.svg
The conversion of valencene to nootkatone is an example of allylic oxidation.

In the synthesis of some fine chemicals, selenium dioxide is used to convert alkenes to allylic alcohols: [15]

R2C=CR'-CHR"2 + [O] → R2C=CR'-C(OH)R"2

where R, R', R" may be alkyl or aryl substituents.

From the industrial perspective, oxidation of benzylic C-H bonds are conducted on a particularly large scale, e.g. production of terephthalic acid, benzoic acid, and cumene hydroperoxide. [16]

Allyl compounds

Many substituents can be attached to the allyl group to give stable compounds. Commercially important allyl compounds include:

See also

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Alkyne</span> Hydrocarbon compound containing one or more C≡C bonds

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula CH3. In formulas, the group is often abbreviated as Me. This hydrocarbon group occurs in many organic compounds. It is a very stable group in most molecules. While the methyl group is usually part of a larger molecule, bounded to the rest of the molecule by a single covalent bond, it can be found on its own in any of three forms: methanide anion, methylium cation or methyl radical. The anion has eight valence electrons, the radical seven and the cation six. All three forms are highly reactive and rarely observed.

<span class="mw-page-title-main">Vinyl group</span> Chemical group (–CH=CH₂)

In organic chemistry, a vinyl group is a functional group with the formula −CH=CH2. It is the ethylene molecule with one fewer hydrogen atom. The name is also used for any compound containing that group, namely R−CH=CH2 where R is any other group of atoms.

In chemistry, halogenation is a chemical reaction which introduces of one or more halogens into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

Cyclopropene is an organic compound with the formula C3H4. It is the simplest cycloalkene. Because the ring is highly strained, cyclopropene is difficult to prepare and highly reactive. This colorless gas has been the subject for many fundamental studies of bonding and reactivity. It does not occur naturally, but derivatives are known in some fatty acids. Derivatives of cyclopropene are used commercially to control ripening of some fruit.

<span class="mw-page-title-main">Benzyl group</span> Chemical group (–CH₂–C₆H₅)

In organic chemistry, benzyl is the substituent or molecular fragment possessing the structure R−CH2−C6H5. Benzyl features a benzene ring attached to a methylene group group.

<span class="mw-page-title-main">Allyl alcohol</span> Organic compound (CH2=CHCH2OH)

Allyl alcohol is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water-soluble, colourless liquid. It is more toxic than typical small alcohols. Allyl alcohol is used as a precursor to many specialized compounds such as flame-resistant materials, drying oils, and plasticizers. Allyl alcohol is the smallest representative of the allylic alcohols.

<span class="mw-page-title-main">Hydroperoxide</span> Class of chemical compounds

Hydroperoxides or peroxols are compounds of the form ROOH, where R stands for any group, typically organic, which contain the hydroperoxy functional group. Hydroperoxide also refers to the hydroperoxide anion and its salts, and the neutral hydroperoxyl radical (•OOH) consist of an unbond hydroperoxy group. When R is organic, the compounds are called organic hydroperoxides. Such compounds are a subset of organic peroxides, which have the formula ROOR. Organic hydroperoxides can either intentionally or unintentionally initiate explosive polymerisation in materials with unsaturated chemical bonds.

<span class="mw-page-title-main">Organosilicon chemistry</span> Organometallic compound containing carbon–silicon bonds

Organosilicon chemistry is the study of organometallic compounds containing carbon–silicon bonds, to which they are called organosilicon compounds. Most organosilicon compounds are similar to the ordinary organic compounds, being colourless, flammable, hydrophobic, and stable to air. Silicon carbide is an inorganic compound.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

In organic chemistry, pentadiene is any hydrocarbon with an open chain of five carbons, connected by two single bonds and two double bonds. All those compounds have the same molecular formula C5H8. Specifically, it may be

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.

Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters where the carbon carries a higher oxidation state. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.

Metal carbon dioxide complexes are coordination complexes that contain carbon dioxide ligands. Aside from the fundamental interest in the coordination chemistry of simple molecules, studies in this field are motivated by the possibility that transition metals might catalyze useful transformations of CO2. This research is relevant both to organic synthesis and to the production of "solar fuels" that would avoid the use of petroleum-based fuels.

The Tsuji–Trost reaction is a palladium-catalysed substitution reaction involving a substrate that contains a leaving group in an allylic position. The palladium catalyst first coordinates with the allyl group and then undergoes oxidative addition, forming the π-allyl complex. This allyl complex can then be attacked by a nucleophile, resulting in the substituted product.

In organic chemistry, carbonyl allylation describes methods for adding an allyl anion to an aldehyde or ketone to produce a homoallylic alcohol. The carbonyl allylation was first reported in 1876 by Alexander Zaitsev and employed an allylzinc reagent.

<span class="mw-page-title-main">Transition-metal allyl complex</span>

Transition-metal allyl complexes are coordination complexes with allyl and its derivatives as ligands. Allyl is the radical with the connectivity CH2CHCH2, although as a ligand it is usually viewed as an allyl anion CH2=CH−CH2, which is usually described as two equivalent resonance structures.

References

  1. 1 2 3 Jerry March, "Advanced Organic Chemistry" 4th Ed. J. Wiley and Sons, 1992: New York. ISBN   0-471-60180-2.
  2. 1 2 Morrison, Robert Thornton; Boyd, Robert Neilson (1987). Organic Chemistry (4th ed.). Allyn and Bacon.
  3. Theodor Wertheim (1844). "Untersuchung des Knoblauchöls". Annalen der Chemie und Pharmacie. 51 (3): 289–315. doi:10.1002/jlac.18440510302.
  4. Eric Block (2010). Garlic and Other Alliums: The Lore and the Science. Royal Society of Chemistry. ISBN   978-0-85404-190-9.
  5. Feussner, Ivo; Wasternack, Claus (2002). "The Lipoxygenase Pathway". Annual Review of Plant Biology. 53: 275–297. doi:10.1146/annurev.arplant.53.100301.135248. PMID   12221977.
  6. Organic Chemistry John McMurry 2nd ed. 1988
  7. Richey, Herman G. (1970). "The properties of alkene carbonium ions and carbanions". In Zabicky, Jacob (ed.). The Chemistry of Alkenes. The Chemistry of Functional Groups. Vol. 2. London: Interscience / William Clowes & Sons. pp. 56–57. ISBN   0471980501. LCCN   64-25218.
  8. Nogi, Keisuke; Yorimitsu, Hideki (2021). "Carbon–Carbon Bond Cleavage at Allylic Positions: Retro-allylation and Deallylation". Chemical Reviews. 121 (1): 345–364. doi:10.1021/acs.chemrev.0c00157. PMID   32396335. S2CID   218617434.
  9. Yus, Miguel; González-Gómez, José C.; Foubelo, Francisco (2013). "Diastereoselective Allylation of Carbonyl Compounds and Imines: Application to the Synthesis of Natural Products". Chemical Reviews. 113 (7): 5595–5698. doi:10.1021/cr400008h. hdl: 10045/38276 . PMID   23540914.
  10. Weaver, Jimmie D.; Recio, Antonio; Grenning, Alexander J.; Tunge, Jon A. (2011). "Transition Metal-Catalyzed Decarboxylative Allylation and Benzylation Reactions". Chemical Reviews. 111 (3): 1846–1913. doi:10.1021/cr1002744. PMC   3116714 . PMID   21235271.
  11. Yus, Miguel; González-Gómez, José C.; Foubelo, Francisco (2011). "Catalytic Enantioselective Allylation of Carbonyl Compounds and Imines". Chemical Reviews. 111 (12): 7774–7854. doi:10.1021/cr1004474. PMID   21923136.
  12. Sakurai Hideki; Hosomi Akira; Hayashi Josabro (1984). "Conjugate Allylation of α,β-Unsaturated Ketones with Allylsilanes: 4-Phenyl-6-Hepten-2-one". Organic Syntheses. 62: 86. doi:10.15227/orgsyn.062.0086.
  13. Maison, Wolfgang; Weidmann, Verena (2013). "Allylic Oxidations of Olefins to Enones". Synthesis. 45 (16): 2201–2221. doi:10.1055/s-0033-1338491. S2CID   196767407.
  14. Horn, Evan J.; Rosen, Brandon R.; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S. (2016). "Scalable and sustainable electrochemical allylic C–H oxidation". Nature. 533 (7601): 77–81. Bibcode:2016Natur.533...77H. doi:10.1038/nature17431. PMC   4860034 . PMID   27096371.
  15. Hoekstra, William J.; Fairlamb, Ian J. S.; Giroux, Simon; Chen, Yuzhong (2017). "Selenium(IV) Oxide". Encyclopedia of Reagents for Organic Synthesis. pp. 1–12. doi:10.1002/047084289X.rs008.pub3. ISBN   978-0-470-84289-8.
  16. Recupero, Francesco; Punta, Carlo (2007). "Free Radical Functionalization of Organic Compounds Catalyzed by N- Hydroxyphthalimide". Chemical Reviews. 107 (9): 3800–3842. doi:10.1021/cr040170k. PMID   17848093.