Donohue syndrome

Last updated
Donohue syndrome
Other namesLeprechaunism
Leprechaunism 1.jpg
Infant with Donohue syndrome
Specialty Endocrinology, rheumatology, medical genetics   OOjs UI icon edit-ltr-progressive.svg
Prognosis poor [1]

Donohue syndrome (also known as leprechaunism) is an extremely rare and severe genetic disorder. Leprechaunism derives its name from the hallmark elvish features (small stature, bulging eyes, thick lips, and upturned nostrils) exhibited by the affected individuals. The disease is caused by a mutation in the INSR gene, which contains the genetic information for the formation of insulin receptors. [2] As a result, affected individuals have either a decreased number of insulin receptors, or insulin receptor with greatly impaired functionality. The lack and impairment of insulin receptor functionality leads to an inability to regulate blood glucose levels through severe insulin resistance. This will ultimately lead to affected development of tissues and organs throughout the body. In addition to the physical abnormalities, leprechaunism is also characterized by endocrine system abnormalities that can lead to conditions such as hyperglycemia (high blood glucose levels), hypoglycemia (low blood glucose levels), hyperinsulemia (high blood insulin levels), and the enlargement of certain sex organs such as the penis in males, and the clitoris in females.

Contents

Signs and symptoms

Child with Donohue syndrome Leprechaunism 3.jpg
Child with Donohue syndrome

Facial features indicative of Donohue syndrome include protuberant and low-set ears, flaring nostrils, unusually large mouth, thick lips, and widely spaced eyes. Physical features include stunted growth (including during gestation), lack of subcutaneous adipose tissue, muscle atrophy, hirsutism (excessive body hair growth), and dysplasia (nail malformation). [3] Additionally, a condition known as acanthosis nigricans is present in affected individuals. In acanthosis nigricans, patches of skin darken and thicken to gain a velvet-like appearance. Gender specific features also include enlarged clitoris and breasts, as well as ovarian cysts in affected females, and enlarged penis in affected males. [3] In the Journal of Pediatric Medicine, Donohue and Uchida described affected sisters whose growth appeared to have ended in the seventh month of gestation, both born alive but dying before four months of age. [4] Very early death (or spontaneous abortion) is typical, although affected individuals sometimes live longer than a decade. [4]

Endocrine related abnormalities as a result of insulin receptor malfunction include insulin resistance, hypoglycemia and hyperglycemia (depending on whether or not the individual has eaten) and hyperinsulemia.

A much milder form of the disease, in which there is some insulin resistance but normal growth and subcutaneous fat distribution, is also known. [5] It is caused by a less severe mutation of the same gene.

Cause

Donohue syndrome has an autosomal recessive pattern of inheritance. Autorecessive.svg
Donohue syndrome has an autosomal recessive pattern of inheritance.
Insulin receptor PBB Protein INSR image.jpg
Insulin receptor

Donohue syndrome is an autosomal recessive genetic disorder. The mutations responsible for the disorder are found on the short arm chromosome 19 (19p13.2) within the coding sequence of the INSR gene (insulin receptor) causing the production of inactive receptor molecules. [1] There are several mutations that can be responsible for the disease, as any mutation that severely impairs the functionality of the insulin receptor will have similar effects. The INSR gene spans over one hundred and twenty thousand base pairs, which contain twenty-two exons coding for a protein that consists of 1382 amino acids. [6] Some of the introns may or may not be spliced out depending on the kind of cell. [7]

Known mutations to the gene which can cause Donohue syndrome include a nonsense mutation that resulted in early termination of the protein, an addition or deletion mutation that resulted in a frame shift, [8] a single missense mutation [4] and in the milder form mentioned above, a single codon change that altered isoleucine to methionine in the receptor protein. [4] Some mutations to the gene instead result in insulin resistant diabetes without Donohue syndrome. [4]

Because mutations in the gene are extremely rare, most cases result from consanguineous matings, for example, between cousins. [4] However, the exact mutation need not be the same. Disease can be caused by inheritance of two different mutant alleles, one from each parent, in which case the patient is a compound heterozygote. [9]

A heterozygous individual (i.e. one who is a carrier for the disease, having only one normal allele for the insulin receptor) will not be affected. Two heterozygous parents have, in theory, a one in four chance of having a child with the disease, and two thirds of their unaffected children will be carriers. However, because spontaneous abortion (miscarriage) often results when the fetus has the disease, in actuality the proportion of children born alive with Donohue syndrome will be lower than 25%. [4]

It is possible to do a genetic test to identify carriers, but because it is so rare, this is not usually done unless there is reason to suspect that the individual being tested is a carrier, for instance having an affected sibling or cousin. As expected for a genetic disease that can be caused by many different mutations, it is not limited to a specific ethnic group, and has been seen in people of various races.[ citation needed ]

Pathophysiology

The cause of the disease is the lack of a fully functional insulin receptor, which has a profound effect during fetal development and thereafter. In one case, it was found (by culturing pancreatic cells) that the receptor produced by the mutant allele is only about 15% as effective as the normal receptor. [4] The beta cells in the pancreas, which make and store insulin and release it on an as-needed basis, are often found to be very large or numerous. [4]

The role of insulin in the body is to facilitate the entrance of glucose into the cell. Once insulin binds to the insulin receptors on the cell surface, the insulin receptors will send a signal that will ultimately bring the glucose transporter protein GLUT4 to attach to the cell membrane. Additionally, once insulin is bound to the insulin receptors, it will also initiate several signaling cascades that will promote cell growth and differentiation, protein synthesis, glucose synthesis, and the inhibition of gluconeogenesis through several metabolic pathways. A malfunctioning insulin receptor would thus not be able to properly initiate the signaling cascades for the aforementioned cellular processes. Many of the problems associated with Donohue syndrome may be due to the insulin receptor binding the insulin-like growth factor, regulating the growth of the embryo, in addition to its well-known role in the regulation of blood sugar. [10]

Diagnosis

There are a few ways to diagnose Donohue syndrome. Due to the nature of the disorder, Donohue syndrome can be diagnosed either genetically, symptomatically, or both. Because Donohue syndrome is a genetic disorder, genetic testing can be performed to diagnose the disease. These genetic tests include diagnostic testing, carrier testing, predictive and pre-symptomatic testing, as well as forensic testing. Prenatally, amniocentesis can be performed to determine if the child will have Donohue syndrome. [2] Additionally, the disorder can be diagnosed through laboratory testing to measure blood insulin levels and defective insulin receptors.

Treatment

While there currently is no cure for Donohue syndrome, treatments for those with the disease are tailored specifically to the symptoms present in each individual. It is often that a team of medical professionals will come together to treat a patient with this condition in their specific realm of practice such as pediatrics, endocrinology, and dermatology. [3] Treatment will often address specific dysfunctions in the patient, such as skin defects, hormonal imbalances, and normal progression of child growth.[ citation needed ]

Prognosis

The prognosis is quite dire, with early death usual. [1] In fact, most patients die in their first year except in milder forms of the disease, but few are known to have lived longer. [4] The variation is unsurprising given the diversity of mutations causing the disease.

Epidemiology

Donohue syndrome is an extremely rare disorder that occurs in one of every million births worldwide. Several dozen cases have been reported in the medical community, and in the reported cases of the disorder, it has been found that the females are twice as likely to have the disorder as men.[ citation needed ]

Eponym

Donohue syndrome was first identified in 1948 by Canadian pathologist William L. Donohue (1906–1985). [11] The name leprechaunism has been largely abandoned because of the perception of the name by some parents of patients as insulting. [4]

Future research

The National Institute of Diabetes and Digestive Kidney Diseases sponsored a phase 2 clinical study in 2001 that would look at the effectiveness of leptin to treat severe insulin resistance. In the study, two children with severe insulin resistance of ages 11 and 13 with known a known defect in the insulin receptor. The goal for the study was to see if leptin could overcome insulin receptor defects by initiating molecules in the insulin-signal cascade. [12] While no outcomes have yet been reported to date, the direction in which this clinical trial is heading is promising.

See also

Related Research Articles

Insulin resistance (IR) is a pathological condition in which cells either fail to respond normally to the hormone insulin or downregulate insulin receptors in response to hyperinsulinemia.

<span class="mw-page-title-main">Glucose-6-phosphate dehydrogenase deficiency</span> Medical condition

Glucose-6-phosphate dehydrogenase deficiency (G6PDD), also known as favism, is the most common enzyme deficiency worldwide. It is an inborn error of metabolism that predisposes to red blood cell breakdown. Most of the time, those who are affected have no symptoms. Following a specific trigger, symptoms such as yellowish skin, dark urine, shortness of breath, and feeling tired may develop. Complications can include anemia and newborn jaundice. Some people never have symptoms.

<span class="mw-page-title-main">Wolfram syndrome</span> Human disease

Wolfram syndrome, also called DIDMOAD, is a rare autosomal-recessive genetic disorder that causes childhood-onset diabetes mellitus, optic atrophy, and deafness as well as various other possible disorders including neurodegeneration.

<span class="mw-page-title-main">Leigh syndrome</span> Mitochondrial metabolism disease characterized by progressive loss of mental and movement abilities

Leigh syndrome is an inherited neurometabolic disorder that affects the central nervous system. It is named after Archibald Denis Leigh, a British neuropsychiatrist who first described the condition in 1951. Normal levels of thiamine, thiamine monophosphate, and thiamine diphosphate are commonly found, but there is a reduced or absent level of thiamine triphosphate. This is thought to be caused by a blockage in the enzyme thiamine-diphosphate kinase, and therefore treatment in some patients would be to take thiamine triphosphate daily. While the majority of patients typically exhibit symptoms between the ages of 3 and 12 months, instances of adult onset have also been documented.

<span class="mw-page-title-main">Insulin receptor</span> Mammalian protein found in Homo sapiens

The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis; a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer. Insulin signalling controls access to blood glucose in body cells. When insulin falls, especially in those with high insulin sensitivity, body cells begin only to have access to lipids that do not require transport across the membrane. So, in this way, insulin is the key regulator of fat metabolism as well. Biochemically, the insulin receptor is encoded by a single gene INSR, from which alternate splicing during transcription results in either IR-A or IR-B isoforms. Downstream post-translational events of either isoform result in the formation of a proteolytically cleaved α and β subunit, which upon combination are ultimately capable of homo or hetero-dimerisation to produce the ≈320 kDa disulfide-linked transmembrane insulin receptor.

<span class="mw-page-title-main">Insulin-like growth factor 1</span> Protein-coding gene in the species Homo sapiens

Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a hormone similar in molecular structure to insulin which plays an important role in childhood growth, and has anabolic effects in adults.

<span class="mw-page-title-main">Bloom syndrome</span> Medical condition

Bloom syndrome is a rare autosomal recessive genetic disorder characterized by short stature, predisposition to the development of cancer, and genomic instability. BS is caused by mutations in the BLM gene which is a member of the RecQ DNA helicase family. Mutations in genes encoding other members of this family, namely WRN and RECQL4, are associated with the clinical entities Werner syndrome and Rothmund–Thomson syndrome, respectively. More broadly, Bloom syndrome is a member of a class of clinical entities that are characterized by chromosomal instability, genomic instability, or both and by cancer predisposition.

<span class="mw-page-title-main">Aceruloplasminemia</span> Medical condition

Aceruloplasminemia is a rare autosomal recessive disorder in which the liver can not synthesize the protein ceruloplasmin properly, which is needed to transport copper around the blood. Copper deficiency in the brain results in neurological problems that generally appear in adulthood and worsen over time. .

<span class="mw-page-title-main">Beta thalassemia</span> Thalassemia characterized by the reduced or absent synthesis of the beta globin chains of hemoglobin

Beta thalassemias are a group of inherited blood disorders. They are forms of thalassemia caused by reduced or absent synthesis of the beta chains of hemoglobin that result in variable outcomes ranging from severe anemia to clinically asymptomatic individuals. Global annual incidence is estimated at one in 100,000. Beta thalassemias occur due to malfunctions in the hemoglobin subunit beta or HBB. The severity of the disease depends on the nature of the mutation.

<span class="mw-page-title-main">Alström syndrome</span> Rare genetic disorder involving childhood obesity and multiple organ dysfunction

Alström syndrome (AS), also called Alström–Hallgren syndrome, is a very rare autosomal recessive genetic disorder characterised by childhood obesity and multiple organ dysfunction. Symptoms include early-onset type 2 diabetes, cone-rod dystrophy resulting in blindness, sensorineural hearing loss and dilated cardiomyopathy. Endocrine disorders typically also occur, such as hypergonadotrophic hypogonadism and hypothyroidism, as well as acanthosis nigricans resulting from hyperinsulinemia. Developmental delay is seen in almost half of people with Alström syndrome.

<span class="mw-page-title-main">Laron syndrome</span> Medical condition

Laron syndrome (LS), also known as growth hormone insensitivity or growth hormone receptor deficiency (GHRD), is an autosomal recessive disorder characterized by a lack of insulin-like growth factor 1 production in response to growth hormone. It is usually caused by inherited growth hormone receptor (GHR) mutations.

Rabson–Mendenhall syndrome is a rare autosomal recessive disorder characterized by severe insulin resistance. The disorder is caused by mutations in the insulin receptor gene. Symptoms include growth abnormalities of the head, face and nails, along with the development of acanthosis nigricans. Treatment involves controlling blood glucose levels by using insulin and incorporating a strategically planned, controlled diet. Also, direct actions against other symptoms may be taken This syndrome usually affects children and has a prognosis of 1–2 years.

3-M syndrome or 3M3 is a rare hereditary disorder characterized by severe growth retardation, facial dysmorphia, and skeletal abnormalities. The name 3-M is derived from the initials of the three researchers who first identified it: Miller, McKusick, and Malvaux and report their findings in the medical literature in 1972. Mutations in any one of the following three genes: CUL7, OBSL1, and CCDC8 are responsible for the occurrence of this disorder. It is inherited through an autosomal recessive pattern and considered very rare, so far less than 100 cases worldwide have been identified. Diagnosis is based on the presence of clinical features. Genetic testing can confirm the diagnosis and identify the specific gene involved. Treatment is aimed at addressing the growth and skeletal problems and may include surgical bone lengthening, adaptive aids, and physical therapy. An endocrinologist may assist with growth hormone replacement and appropriate evaluations during puberty.

Congenital generalized lipodystrophy is an extremely rare autosomal recessive condition, characterized by an extreme scarcity of fat in the subcutaneous tissues. It is a type of lipodystrophy disorder where the magnitude of fat loss determines the severity of metabolic complications. Only 250 cases of the condition have been reported, and it is estimated that it occurs in 1 in 10 million people worldwide.

<span class="mw-page-title-main">Wolcott–Rallison syndrome</span> Medical condition

Wolcott–Rallison syndrome,WRS, is a rare, autosomal recessive disorder with infancy-onset diabetes mellitus, multiple epiphyseal dysplasia, osteopenia, mental retardation or developmental delay, and hepatic and renal dysfunction as main clinical findings. Patients with WRS have mutations in the EIF2AK3 gene, which encodes the eukaryotic translation initiation factor 2-alpha kinase 3. Other disease names include multiple epiphyseal dysplasia and early-onset diabetes mellitus. Most patients with this disease do not survive to adulthood. The majority of WRS patients die from fulminant hepatitis during childhood. There are few reported cases for this disease. Of the 54 families worldwide with reported WRS cases, 22.2% of them are from the Kingdom of Saudi Arabia. Of the 23 WRS patients in Saudi Arabia, all but one is the result of consanguineous marriages. Another country where WRS cases have been found is Kosovo. Here, the Albanian population is also known for consanguineous marriages, but there were some cases involving patients from non-consanguineous parents that were carriers for the same mutant allele.

MODY 2 or GCK-MODY is a form of maturity-onset diabetes of the young. It is due to any of several mutations in the GCK gene on human chromosome 7 for glucokinase. Glucokinase serves as the glucose sensor for the pancreatic beta cell. Normal glucokinase triggers insulin secretion as the glucose exceeds about 90 mg/dl. These loss-of-function mutations result in a glucokinase molecule that is less sensitive or less responsive to rising levels of glucose. The beta cells in MODY 2 have a normal ability to make and secrete insulin, but do so only above an abnormally high threshold. This produces a chronic, mild increase in blood sugar, which is usually asymptomatic. It is usually detected by accidental discovery of mildly elevated blood sugar. An oral glucose tolerance test is much less abnormal than would be expected from the impaired (elevated) fasting blood sugar, since insulin secretion is usually normal once the glucose has exceeded the threshold for that specific variant of the glucokinase enzyme.

<span class="mw-page-title-main">Neonatal diabetes</span> Medical condition

Neonatal diabetes mellitus (NDM) is a disease that affects an infant and their body's ability to produce or use insulin.NDM is a kind of diabetes that is monogenic and arises in the first 6 months of life. Infants do not produce enough insulin, leading to an increase in glucose accumulation. It is a rare disease, occurring in only one in 100,000 to 500,000 live births. NDM can be mistaken for the much more common type 1 diabetes, but type 1 diabetes usually occurs later than the first 6 months of life. There are two types of NDM: permanent neonatal diabetes mellitus (PNDM), a lifelong condition, and transient neonatal diabetes mellitus (TNDM), a form of diabetes that disappears during the infant stage but may reappear later in life.

Ichthyosis prematurity syndrome (IPS) is a dermatological disease with known genetic causes. This syndrome is a rare subcategory of autosomal recessive congenital ichthyosis (ARCI). It is associated with complications in the mid-trimester of a pregnancy leading to premature births. Although most prevalent in individuals of Scandinavian origin, there have also been scattered cases in people of Japanese, Italian and Indian ethnicity. This disorder is also referred to as ichthyosis congenital type IV.

Clonal hypereosinophilia, also termed primary hypereosinophilia or clonal eosinophilia, is a grouping of hematological disorders all of which are characterized by the development and growth of a pre-malignant or malignant population of eosinophils, a type of white blood cell that occupies the bone marrow, blood, and other tissues. This population consists of a clone of eosinophils, i.e. a group of genetically identical eosinophils derived from a sufficiently mutated ancestor cell.

WNT4 deficiency is a rare genetic disorder that affects females and it results in the underdevelopment and sometimes absence of the uterus and vagina. WNT4 deficiency is caused by mutations of the WNT4 gene. Abnormally high androgen levels are found in the blood and can initiate and promote the development of male sex characteristics. This is seen as male pattern of hair growth on the chest and face. Those with this genetic defect develop breasts but do not have their period. Mayer–Rokitansky–Küster–Hauser syndrome is a related but distinct syndrome. Some women who have an initial diagnosis of MRKH have later been found to have WNT4 deficiency. Most women with MRKH syndrome do not have genetic mutations of the WNT4 gene. The failure to begin the menstrual cycle may be the initial clinical sign of WNT4 deficiency. WNT4 deficiency can cause significant psychological challenges and counseling is recommended.

References

  1. 1 2 3 Longo N, Wang Y, Smith SA, Langley SD, DiMeglio LA, Giannella-Neto D (2002). "Genotype-phenotype correlation in inherited severe insulin resistance". Hum. Mol. Genet. 11 (12): 1465–75. doi: 10.1093/hmg/11.12.1465 . PMID   12023989.
  2. 1 2 Reference, Genetics Home. "Donohue syndrome". Genetics Home Reference. Retrieved 2019-11-19.
  3. 1 2 3 "Leprechaunism". NORD (National Organization for Rare Disorders). Retrieved 2019-11-19.
  4. 1 2 3 4 5 6 7 8 9 10 11 Online Mendelian Inheritance in Man (OMIM): Insulin Receptor - 147670
  5. al-Gazali LI, Khalil M, Devadas K (1993). "A syndrome of insulin resistance resembling leprechaunism in five sibs of consanguineous parents". J. Med. Genet. 30 (6): 470–5. doi:10.1136/jmg.30.6.470. PMC   1016418 . PMID   8326490.
  6. NCBI Sequence Viewer v2.0
  7. Benecke H, Flier JS, Moller DE (1992). "Alternatively spliced variants of the insulin receptor protein. Expression in normal and diabetic human tissues". J. Clin. Invest. 89 (6): 2066–70. doi:10.1172/JCI115819. PMC   295926 . PMID   1602013.
  8. Psiachou H, Mitton S, Alaghband-Zadeh J, Hone J, Taylor SI, Sinclair L (1993). "Leprechaunism and homozygous nonsense mutation in the insulin receptor gene". Lancet. 342 (8876): 924. doi:10.1016/0140-6736(93)91970-W. PMID   8105179. S2CID   8869552.
  9. Elsas LJ, Endo F, Strumlauf E, Elders J, Priest JH (1985). "Leprechaunism: an inherited defect in a high-affinity insulin receptor". Am. J. Hum. Genet. 37 (1): 73–88. PMC   1684537 . PMID   3883764.
  10. Personal communication with J. Bell, Ph.D.
  11. Donohue WL; Edwards, HE (1948). "Dysendocrinism". The Journal of Pediatrics . 32 (6): 739–48. doi:10.1016/S0022-3476(48)80231-3. PMID   18866943.
  12. "Search of: "Leprechaunism" - List Results - ClinicalTrials.gov". www.clinicaltrials.gov. Retrieved 2019-11-24.