SB-236057

Last updated
SB-236057
SB236057 structure.png
Clinical data
ATC code
  • none
Identifiers
  • 1'-ethyl-5-[2'-methyl-4'-(5-methyl-1,3,4-oxadiazolyl-2-yl)biphenyl-4-carbonyl]-2,3,6,7-tetrahydrospiro(furo[2,3-f]indole-3,4'-piperidine)
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C33H34N4O3
Molar mass 534.660 g·mol−1
3D model (JSmol)
  • n5nc(C)oc5-c(cc2C)ccc2-c6ccc(cc6)C(=O)N(CCc1cc3OC7)c1cc3C7(CC4)CCN4CC
  • InChI=1S/C33H34N4O3/c1-4-36-15-12-33(13-16-36)20-39-30-18-25-11-14-37(29(25)19-28(30)33)32(38)24-7-5-23(6-8-24)27-10-9-26(17-21(27)2)31-35-34-22(3)40-31/h5-10,17-19H,4,11-16,20H2,1-3H3
  • Key:WXAKEEQOWUHGCI-UHFFFAOYSA-N

SB-236057 is a compound which is a potent and selective inverse agonist for the serotonin receptor 5-HT1B, acting especially at 5-HT1B autoreceptors on nerve terminals. It produces a rapid increase in serotonin levels in the brain, and was originally researched as a potential antidepressant. [1] [2] However subsequent research found that SB-236,057 also acts as a potent teratogen, producing severe musculoskeletal birth defects when rodents were exposed to it during pregnancy. This has made it of little use for research into its original applications, yet has made it useful for studying embryonic development instead. [3] [4]

Related Research Articles

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

<span class="mw-page-title-main">Noradrenergic and specific serotonergic antidepressant</span>

Noradrenergic and specific serotonergic antidepressants (NaSSAs) are a class of psychiatric drugs used primarily as antidepressants. They act by antagonizing the α2-adrenergic receptor and certain serotonin receptors such as 5-HT2A and 5-HT2C, but also 5-HT3, 5-HT6, and/or 5-HT7 in some cases. By blocking α2-adrenergic autoreceptors and heteroreceptors, NaSSAs enhance adrenergic and serotonergic neurotransmission in the brain involved in mood regulation, notably 5-HT1A-mediated transmission. In addition, due to their blockade of certain serotonin receptors, serotonergic neurotransmission is not facilitated in unwanted areas, which prevents the incidence of many side effects often associated with selective serotonin reuptake inhibitor (SSRI) antidepressants; hence, in part, the "specific serotonergic" label of NaSSAs.

<span class="mw-page-title-main">Pindolol</span> Chemical compound

Pindolol, sold under the brand name Visken among others, is a nonselective beta blocker which is used in the treatment of hypertension. It is also an antagonist of the serotonin 5-HT1A receptor, preferentially blocking inhibitory 5-HT1A autoreceptors, and has been researched as an add-on therapy to selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression.

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations. 5-HT is short for 5-hydroxy-tryptamine or serotonin. This is the main excitatory receptor subtype among the GPCRs for serotonin, although 5-HT2A may also have an inhibitory effect on certain areas such as the visual cortex and the orbitofrontal cortex. This receptor was first noted for its importance as a target of serotonergic psychedelic drugs such as LSD and psilocybin mushrooms. Later it came back to prominence because it was also found to be mediating, at least partly, the action of many antipsychotic drugs, especially the atypical ones.

5-HT<sub>4</sub> receptor Protein-coding gene in the species Homo sapiens

5-Hydroxytryptamine receptor 4 is a protein that in humans is encoded by the HTR4 gene.

5-HT<sub>1A</sub> receptor Serotonin receptor protein distributed in the cerebrum and raphe nucleus

The serotonin 1A receptor is a subtype of serotonin receptor, or 5-HT receptor, that binds serotonin, also known as 5-HT, a neurotransmitter. 5-HT1A is expressed in the brain, spleen, and neonatal kidney. It is a G protein-coupled receptor (GPCR), coupled to the Gi protein, and its activation in the brain mediates hyperpolarisation and reduction of firing rate of the postsynaptic neuron. In humans, the serotonin 1A receptor is encoded by the HTR1A gene.

5-HT<sub>1B</sub> receptor Mammalian protein found in Homo sapiens

5-hydroxytryptamine receptor 1B also known as the 5-HT1B receptor is a protein that in humans is encoded by the HTR1B gene. The 5-HT1B receptor is a 5-HT receptor subtype.

5-HT<sub>1E</sub> receptor Protein-coding gene in the species Homo sapiens

5-hydroxytryptamine (serotonin) 1E receptor (5-HT1E) is a highly expressed human G-protein coupled receptor that belongs to the 5-HT1 receptor family. The human gene is denoted as HTR1E.

5-HT<sub>2B</sub> receptor Mammalian protein found in Homo sapiens

5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the HTR2B gene. 5-HT2B is a member of the 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT).

5-HT<sub>5A</sub> receptor Protein-coding gene in the species Homo sapiens

5-Hydroxytryptamine (serotonin) receptor 5A, also known as HTR5A, is a protein that in humans is encoded by the HTR5A gene. Agonists and antagonists for 5-HT receptors, as well as serotonin uptake inhibitors, present promnesic (memory-promoting) and/or anti-amnesic effects under different conditions, and 5-HT receptors are also associated with neural changes.

5-HT<sub>6</sub> receptor Protein-coding gene in the species Homo sapiens

The 5HT6 receptor is a subtype of 5HT receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5HT). It is a G protein-coupled receptor (GPCR) that is coupled to Gs and mediates excitatory neurotransmission. HTR6 denotes the human gene encoding for the receptor.

5-HT<sub>7</sub> receptor Protein-coding gene in the species Homo sapiens

The 5-HT7 receptor is a member of the GPCR superfamily of cell surface receptors and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) The 5-HT7 receptor is coupled to Gs (stimulates the production of the intracellular signaling molecule cAMP) and is expressed in a variety of human tissues, particularly in the brain, the gastrointestinal tract, and in various blood vessels. This receptor has been a drug development target for the treatment of several clinical disorders. The 5-HT7 receptor is encoded by the HTR7 gene, which in humans is transcribed into 3 different splice variants.

<span class="mw-page-title-main">5-Carboxamidotryptamine</span> Chemical compound

5-Carboxamidotryptamine (5-CT) is a tryptamine derivative closely related to the neurotransmitter serotonin.

<span class="mw-page-title-main">Ro60-0175</span> Chemical compound

Ro60-0175 is a drug developed by Hoffmann–La Roche, which has applications in scientific research. It acts as a potent and selective agonist for both the 5-HT2B and 5-HT2C serotonin receptor subtypes, with good selectivity over the closely related 5-HT2A subtype, and little or no affinity at other receptors.

<span class="mw-page-title-main">SB-269970</span> Chemical compound

SB-269970 is a drug and research chemical developed by GlaxoSmithKline used in scientific studies. It is believed to act as a selective 5-HT7 receptor antagonist (EC50 = 1.25 nM) (or possibly inverse agonist). A subsequent study in guinea pig at a concentration of 10 μM showed that it also blocks the α2-adrenergic receptor. The large difference in test concentrations however confirms the selectivity of SB-269970 for the 5-HT7 receptor.

<span class="mw-page-title-main">Roxindole</span> Dopaminergic & serotonergic drug developed for schizophrenia treatment

Roxindole (EMD-49,980) is a dopaminergic and serotonergic drug which was originally developed by Merck KGaA for the treatment of schizophrenia. In clinical trials its antipsychotic efficacy was only modest but it was unexpectedly found to produce potent and rapid antidepressant and anxiolytic effects. As a result, roxindole was further researched for the treatment of depression instead. It has also been investigated as a therapy for Parkinson's disease and prolactinoma.

<span class="mw-page-title-main">SB-206553</span> Chemical compound

SB-206553 is a drug which acts as a mixed antagonist for the 5-HT2B and 5-HT2C serotonin receptors. It has anxiolytic properties in animal studies and interacts with a range of other drugs. It has also been shown to act as a positive allosteric modulator of α7 nicotinic acetylcholine receptors. Modified derivatives of SB-206553 have been used to probe the structure of the 5-HT2B receptor.

5-HT2C receptor agonists are a class of drugs that activate 5-HT2C receptors. They have been investigated for the treatment of a number of conditions including obesity, psychiatric disorders, sexual dysfunction and urinary incontinence.

<span class="mw-page-title-main">SB-243213</span> Chemical compound

SB-243213 is a research chemical which acts as a selective inverse agonist for the 5HT2C receptor and has anxiolytic effects. It has better than 100x selectivity for 5-HT2C over all other receptor subtypes tested, and a longer duration of action compared to older 5-HT2C antagonist ligands.

References

  1. Middlemiss DN, Göthert M, Schlicker E, Scott CM, Selkirk JV, Watson J, et al. (June 1999). "SB-236057, a selective 5-HT1B receptor inverse agonist, blocks the 5-HT human terminal autoreceptor". European Journal of Pharmacology. 375 (1–3): 359–65. doi:10.1016/s0014-2999(99)00262-9. PMID   10443589.
  2. Roberts C, Watson J, Price GW, Middlemiss DN (2006). "SB-236057-A: a selective 5-HT1B receptor inverse agonist". CNS Drug Reviews. 7 (4): 433–44. doi:10.1111/j.1527-3458.2001.tb00209.x. PMC   6741665 . PMID   11830759.
  3. Augustine-Rauch KA, Zhang QJ, Posobiec L, Mirabile R, DeBoer LS, Solomon HM, Wier PJ (October 2004). "SB-236057: Critical window of sensitivity study and embryopathy of a potent musculoskeletal teratogen". Birth Defects Research. Part A, Clinical and Molecular Teratology. 70 (10): 773–88. doi:10.1002/bdra.20079. PMID   15472921.
  4. Augustine-Rauch KA, Zhang QJ, Leonard JL, Chadderton A, Welsh MJ, Rami HK, et al. (October 2004). "Evidence for a molecular mechanism of teratogenicity of SB-236057, a 5-HT1B receptor inverse agonist that alters axial formation". Birth Defects Research. Part A, Clinical and Molecular Teratology. 70 (10): 789–807. doi:10.1002/bdra.20076. PMID   15472891.