SB-243213

Last updated
SB-243213
SB243213 structure.png
Identifiers
  • 5-methyl-N-(6-[(2-methylpyridin-3-yl)oxy]pyridin-3-yl)-6-(trifluoromethyl)indoline-1-carboxamide
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C22H19F3N4O2
Molar mass 428.415 g·mol−1
3D model (JSmol)
  • CC1=C(C(F)(F)F)C=C(N(C(NC2=CN=C(OC3=C(C)N=CC=C3)C=C2)=O)CC4)C4=C1
  • InChI=1S/C22H19F3N4O2/c1-13-10-15-7-9-29(18(15)11-17(13)22(23,24)25)21(30)28-16-5-6-20(27-12-16)31-19-4-3-8-26-14(19)2/h3-6,8,10-12H,7,9H2,1-2H3,(H,28,30)
  • Key:ZETBBVYSBABLHL-UHFFFAOYSA-N

SB-243213 is a research chemical which acts as a selective inverse agonist for the 5HT2C receptor and has anxiolytic effects. It has better than 100x selectivity for 5-HT2C over all other receptor subtypes tested, and a longer duration of action compared to older 5-HT2C antagonist ligands. [1] [2] [3] [4] [5] [6] [7] [8]

See also

Related Research Articles

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations.

5-HT<sub>2C</sub> receptor Serotonin receptor protein distributed mainly in the choroid plexus

The 5-HT2C receptor is a subtype of the 5-HT2 receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Like all 5-HT2 receptors, it is a G protein-coupled receptor (GPCR) that is coupled to Gq/G11 and mediates excitatory neurotransmission. HTR2C denotes the human gene encoding for the receptor, that in humans is located on the X chromosome. As males have one copy of the gene and females have one of the two copies of the gene repressed, polymorphisms at this receptor can affect the two sexes to differing extent.

5-HT<sub>2B</sub> receptor Mammalian protein found in Homo sapiens

5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the HTR2B gene. 5-HT2B is a member of the 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Like all 5-HT2 receptors, the 5-HT2B receptor is Gq/G11-protein coupled, leading to downstream activation of phospholipase C.

<span class="mw-page-title-main">Cyamemazine</span> Antipsychotic medication

Cyamemazine (Tercian), also known as cyamepromazine, is a typical antipsychotic drug of the phenothiazine class which was introduced by Theraplix in France in 1972 and later in Portugal as well.

<span class="mw-page-title-main">SB-242084</span> Chemical compound

SB-242084 is a psychoactive drug and research chemical which acts as a selective antagonist for the 5HT2C receptor. It has anxiolytic effects, and enhances dopamine signalling in the limbic system, as well as having complex effects on the dopamine release produced by cocaine, increasing it in some brain regions but reducing it in others. It has been shown to increase the effectiveness of the selective serotonin reuptake inhibitor (SSRI) class of antidepressants, and may also reduce their side effects. In animal studies, SB-242084 produced stimulant-type activity and reinforcing effects, somewhat similar to but much weaker than cocaine or amphetamines.

<span class="mw-page-title-main">SB-399885</span> Chemical compound

SB-399885 is a drug which is used in scientific research. It acts as a potent, selective and orally active 5-HT6 receptor antagonist, with a Ki of 9.0nM. SB-399885 and other 5-HT6 antagonists show nootropic effects in animal studies, as well as antidepressant and anxiolytic effects which are comparable to and synergistic with drugs such as imipramine and diazepam, and have been proposed as potential novel treatments for cognitive disorders such as schizophrenia and Alzheimer's disease.

<span class="mw-page-title-main">MTEP</span> Chemical compound

3-( ethynyl)pyridine (MTEP) is a research drug that was developed by Merck & Co. as a selective allosteric antagonist of the metabotropic glutamate receptor subtype mGluR5. Identified through structure-activity relationship studies on an older mGluR5 antagonist MPEP, MTEP has subsequently itself acted as a lead compound for newer and even more improved drugs.

<span class="mw-page-title-main">RS-102221</span> Chemical compound

RS-102221 is a drug developed by Hoffmann–La Roche, which was one of the first compounds discovered that acts as a potent and selective antagonist at the serotonin 5-HT2C receptor, with around 100× selectivity over the closely related 5-HT2A and 5-HT2B receptors. It has anxiolytic effects in animal studies, increases the effectiveness of SSRI antidepressants, and shows a complex interaction with cocaine, increasing some effects but decreasing others, reflecting a role for the 5-HT2C receptor in regulation of the dopamine signalling system in the brain.

<span class="mw-page-title-main">BW-723C86</span> Chemical compound

BW-723C86 is a tryptamine derivative drug which acts as a 5-HT2B receptor agonist. It has anxiolytic effects in animal studies, and is also used for investigating the function of the 5-HT2B receptor in a range of other tissues.

<span class="mw-page-title-main">SB-269970</span> Chemical compound

SB-269970 is a drug and research chemical developed by GlaxoSmithKline used in scientific studies. It is believed to act as a selective 5-HT7 receptor antagonist (EC50 = 1.25 nM) (or possibly inverse agonist). A subsequent study in guinea pig at a concentration of 10 μM showed that it also blocks the α2-adrenergic receptor. The large difference in test concentrations however confirms the selectivity of SB-269970 for the 5-HT7 receptor.

<span class="mw-page-title-main">Serotonin antagonist and reuptake inhibitor</span> Class of drug

Serotonin antagonist and reuptake inhibitors (SARIs) are a class of drugs used mainly as antidepressants, but also as anxiolytics and hypnotics. They act by antagonizing serotonin receptors such as 5-HT2A and inhibiting the reuptake of serotonin, norepinephrine, and/or dopamine. Additionally, most also antagonize α1-adrenergic receptors. The majority of the currently marketed SARIs belong to the phenylpiperazine class of compounds.

<span class="mw-page-title-main">Adatanserin</span> Chemical compound

Adatanserin is a mixed 5-HT1A receptor partial agonist and 5-HT2A and 5-HT2C receptor antagonist. It was under development by Wyeth as an antidepressant but was ultimately not pursued.

<span class="mw-page-title-main">Pruvanserin</span> Chemical compound

Pruvanserin is a selective 5-HT2A receptor antagonist which was under development by Eli Lilly and Company for the treatment of insomnia. It was in phase II clinical trials in 2008 but appears to have been discontinued as it is no longer in the company's development pipeline. In addition to its sleep-improving properties, pruvanserin has also been shown to have antidepressant, anxiolytic, and working memory-enhancing effects in animal studies.

<span class="mw-page-title-main">Naphthylpiperazine</span> Chemical compound

1-(1-Naphthyl)piperazine (1-NP) is a drug which is a phenylpiperazine derivative. It acts as a non-selective, mixed serotonergic agent, exerting partial agonism at the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F receptors, while antagonizing the 5-HT2A, 5-HT2B, and 5-HT2C receptors. It has also been shown to possess high affinity for the 5-HT3, 5-HT5A, 5-HT6, and 5-HT7 receptors, and may bind to 5-HT4 and the SERT as well. In animals it produces effects including hyperphagia, hyperactivity, and anxiolysis, of which are all likely mediated predominantly or fully by blockade of the 5-HT2C receptor.

<span class="mw-page-title-main">CSP-2503</span> Chemical compound

CSP-2503 is a potent and selective 5-HT1A receptor agonist, 5-HT2A receptor antagonist, and 5-HT3 receptor antagonist of the naphthylpiperazine class. First synthesized in 2003, it was designed based on computational models and QSAR studies. In rat studies, CSP-2503 has demonstrated anxiolytic effects, and thus has been suggested as a treatment for anxiety in humans with a multimodal mechanism of action.

<span class="mw-page-title-main">SB-206553</span> Chemical compound

SB-206553 is a drug which acts as a mixed antagonist for the 5-HT2B and 5-HT2C serotonin receptors. It has anxiolytic properties in animal studies and interacts with a range of other drugs. It has also been shown to act as a positive allosteric modulator of α7 nicotinic acetylcholine receptors. Modified derivatives of SB-206553 have been used to probe the structure of the 5-HT2B receptor.

<span class="mw-page-title-main">S32212</span> Chemical compound

S32212 is a drug which is under preclinical investigation as a potential antidepressant medicine. It behaves as a selective, combined 5-HT2C receptor inverse agonist and α2-adrenergic receptor antagonist (at all three subtypes—α2A, α2B, and α2C) with additional 5-HT2A and, to a lesser extent, 5-HT2B receptor antagonistic properties, and lacks any apparent affinity for the monoamine reuptake transporters or for the α1-adrenergic, H1, or mACh receptors. This profile of activity is compatible with the definition of a noradrenergic and specific serotonergic antidepressant (NaSSA), and as such, S32212 could in turn be classified as a NaSSA if it reaches the market.

5-HT2C receptor agonists are a class of drugs that activate 5-HT2C receptors. They have been investigated for the treatment of a number of conditions including obesity, psychiatric disorders, sexual dysfunction and urinary incontinence.

<span class="mw-page-title-main">SB-228357</span> Chemical compound

SB-228357 is a drug which acts as an antagonist for the 5HT2B and 5HT2C receptors. It has antidepressant and anxiolytic effects in animal models, and inhibits 5-HT2B mediated proliferation of cardiac fibroblasts.

References

  1. Wood MD, Reavill C, Trail B, Wilson A, Stean T, Kennett GA, et al. (August 2001). "SB-243213; a selective 5-HT2C receptor inverse agonist with improved anxiolytic profile: lack of tolerance and withdrawal anxiety". Neuropharmacology. 41 (2): 186–99. doi:10.1016/S0028-3908(01)00054-5. PMID   11489455. S2CID   36124035.
  2. Blackburn TP, Minabe Y, Middlemiss DN, Shirayama Y, Hashimoto K, Ashby CR (December 2002). "Effect of acute and chronic administration of the selective 5-HT2C receptor antagonist SB-243213 on midbrain dopamine neurons in the rat: an in vivo extracellular single cell study". Synapse. 46 (3): 129–39. doi:10.1002/syn.10116. PMID   12325040. S2CID   36766760.
  3. Di Matteo V, Pierucci M, Esposito E (April 2004). "Selective stimulation of serotonin2c receptors blocks the enhancement of striatal and accumbal dopamine release induced by nicotine administration". Journal of Neurochemistry. 89 (2): 418–29. doi:10.1111/j.1471-4159.2004.02337.x. PMID   15056285. S2CID   29021463.
  4. Millan MJ, Brocco M, Gobert A, Dekeyne A (February 2005). "Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade". Psychopharmacology. 177 (4): 448–58. doi:10.1007/s00213-004-1962-z. PMID   15289999. S2CID   20866665.
  5. Berg KA, Navailles S, Sanchez TA, Silva YM, Wood MD, Spampinato U, Clarke WP (October 2006). "Differential effects of 5-methyl-1-2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) on 5-hydroxytryptamine(2C) receptor-mediated responses". The Journal of Pharmacology and Experimental Therapeutics. 319 (1): 260–8. doi:10.1124/jpet.106.104448. PMID   16807362. S2CID   14889900.
  6. Monti JM, Jantos H (December 2006). "Effects of the serotonin 5-HT2A/2C receptor agonist DOI and of the selective 5-HT2A or 5-HT2C receptor antagonists EMD 281014 and SB-243213, respectively, on sleep and waking in the rat". European Journal of Pharmacology. 553 (1–3): 163–70. doi:10.1016/j.ejphar.2006.09.027. PMID   17059817.
  7. Leggio GM, Cathala A, Moison D, Cunningham KA, Piazza PV, Spampinato U (February 2009). "Serotonin2C receptors in the medial prefrontal cortex facilitate cocaine-induced dopamine release in the rat nucleus accumbens". Neuropharmacology. 56 (2): 507–13. doi:10.1016/j.neuropharm.2008.10.005. PMC   3130963 . PMID   18977370.
  8. Kadiri N, Lagière M, Le Moine C, Millan MJ, De Deurwaerdère P, Navailles S (August 2012). "Diverse effects of 5-HT2C receptor blocking agents on c-Fos expression in the rat basal ganglia". European Journal of Pharmacology. 689 (1–3): 8–16. doi:10.1016/j.ejphar.2012.05.022. PMID   22643326.