Names | |
---|---|
Preferred IUPAC name 1,10-Phenanthroline [1] | |
Identifiers | |
3D model (JSmol) |
|
126461 | |
ChEBI | |
ChEMBL |
|
ChemSpider | |
DrugBank | |
ECHA InfoCard | 100.000.572 |
EC Number |
|
4040 | |
KEGG | |
PubChem CID | |
RTECS number |
|
UNII |
|
UN number | 2811 |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C12H8N2 | |
Molar mass | 180.21 g/mol |
Appearance | colourless crystals |
Density | 1.31 g/cm3 |
Melting point | 118.56 °C (245.41 °F; 391.71 K) [2] |
Boiling point | 409.2 [2] |
high [2] | |
Solubility in other solvents | acetone, ethanol [2] |
Acidity (pKa) | 4.84 (phenH+) [2] |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards | mild neurotoxin, strong nephrotoxin, and powerful diuretic |
GHS labelling: | |
Danger | |
H301, H410 | |
P264, P270, P273, P301+P310, P321, P330, P391, P405, P501 | |
Related compounds | |
Related compounds | 2,2'-bipyridine ferroin phenanthrene |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
1,10-Phenanthroline (phen) is a heterocyclic organic compound. It is a white solid that is soluble in organic solvents. The 1,10 refer to the location of the nitrogen atoms that replace CH's in the hydrocarbon called phenanthrene.
Abbreviated "phen", it is used as a ligand in coordination chemistry, forming strong complexes with most metal ions. [3] [4] It is often sold as the monohydrate.
Phenanthroline may be prepared by two successive Skraup reactions of glycerol with o-phenylenediamine, catalyzed by sulfuric acid, and an oxidizing agent, traditionally aqueous arsenic acid or nitrobenzene. [5] Dehydration of glycerol gives acrolein which condenses with the amine followed by a cyclization.
Oxidation of 1,10-phenanthroline with a mixture of nitric and sulfuric acids gives 1,10-phenanthroline-5,6-dione. [6]
1,10-Phenanthroline forms many coordination complexes. One example is the iron complex called ferroin.
Alkyllithium reagents form deeply colored derivatives with phenanthroline. The alkyllithium content of solutions can be determined by treatment of such reagents with small amounts of phenanthroline (ca. 1 mg) followed by titration with alcohols to a colourless endpoint. [7] Grignard reagents may be similarly titrated. [8]
In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.
Terpyridine is a heterocyclic compound derived from pyridine. It is a white solid that is soluble in most organic solvents. The compound is mainly used as a ligand in coordination chemistry.
Copper(I) chloride, commonly called cuprous chloride, is the lower chloride of copper, with the formula CuCl. The substance is a white solid sparingly soluble in water, but very soluble in concentrated hydrochloric acid. Impure samples appear green due to the presence of copper(II) chloride (CuCl2).
o-Phenylenediamine (OPD) is an organic compound with the formula C6H4(NH2)2. This aromatic diamine is an important precursor to many heterocyclic compounds. OPD is a white compound although samples appear darker owing to oxidation by air. It is isomeric with m-phenylenediamine and p-phenylenediamine.
Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.
Grignard reagents or Grignard compounds are chemical compounds with the general formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH3 and phenylmagnesium bromide (C6H5)−Mg−Br. They are a subclass of the organomagnesium compounds.
Ferroin is the chemical compound with the formula [Fe(o-phen)3]SO4, where o-phen is an abbreviation for 1,10-phenanthroline, a bidentate ligand. The term "ferroin" is used loosely and includes salts of other anions such as chloride. Ferroin is one of many transition metal complexes of 1,10-phenanthroline.
In organic chemistry, a dithiocarbamate is a functional group with the general formula R2N−C(=S)−S−R and structure >N−C(=S)−S−. It is the analog of a carbamate in which both oxygen atoms are replaced by sulfur atoms.
The Kulinkovich reaction describes the organic synthesis of substituted cyclopropanols through reaction of esters with dialkyldialkoxytitanium reagents, which are generated in situ from Grignard reagents containing a hydrogen in beta-position and titanium(IV) alkoxides such as titanium isopropoxide. This reaction was first reported by Oleg Kulinkovich and coworkers in 1989.
In organic chemistry, the Kumada coupling is a type of cross coupling reaction, useful for generating carbon–carbon bonds by the reaction of a Grignard reagent and an organic halide. The procedure uses transition metal catalysts, typically nickel or palladium, to couple a combination of two alkyl, aryl or vinyl groups. The groups of Robert Corriu and Makoto Kumada reported the reaction independently in 1972.
Nickel(II) chromate (NiCrO4) is an acid-soluble compound, red-brown in color, with high tolerances for heat. It and the ions that compose it have been linked to tumor formation and gene mutation, particularly to wildlife.
Silver trifluoromethanesulfonate, or silver triflate is the triflate (CF3SO3−) salt of Ag+. It is a white or colorless solid that is soluble in water and some organic solvents including, benzene. It is a reagent used in the synthesis of organic and inorganic triflates.
Phanquinone is an organic compound with the formula C12H6N2O2. It is derived by oxidation of 4,7-phenanthroline.
Zinc compounds are chemical compounds containing the element zinc which is a member of the group 12 of the periodic table. The oxidation state of zinc in most compounds is the group oxidation state of +2. Zinc may be classified as a post-transition main group element with zinc(II). Zinc compounds are noteworthy for their nondescript appearance and behavior: they are generally colorless, do not readily engage in redox reactions, and generally adopt symmetrical structures.
Organoantimony chemistry is the chemistry of compounds containing a carbon to antimony (Sb) chemical bond. Relevant oxidation states are SbV and SbIII. The toxicity of antimony limits practical application in organic chemistry.
Neocuproine is a heterocyclic organic compound and chelating agent. Phenanthroline ligands were first published in the late 19th century, and the derivatives substituted at the 2 and 9 positions are among the most studied of the modified phenanthrolines.
Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3COCHCOCH−
3) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR′−). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5H
7O−
2 in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).
Bathocuproine is an organic compound with the formula (C6H5)2(CH3)2C12H4N2. It is related to [Phenanthroline|1,10-phenanthroline]] by the placement of two methyl groups and two phenyl groups in the 2,9 and 4,7 positions, respectively. Like 1,10-phenanthroline, bathocuproine is a bidentate chelating ligand. The two methyl groups flank the nitrogen centers, such that bathocuproine is a bulky ligand. It forms a monomeric 1:1 complex with nickel(II) chloride, whereas the less bulky parent phenanthroline forms a 2:1 complex.
1,10-Phenanthroline-5,6-dione is an organic compound with the formula C12H6O2N2. It is the quinone derivative of 1,10-phenanthroline. The compound exhibits many reactions, including condensations with diamines to give quinoxalines and decarbonylation to give a diazafluorenone.
Transition metal complexes of 1,10-phenanthroline ("phen") are coordination complexes containing one or more 1,10-phenanthroline ligands. Complexes have been described for many transition metals. In almost all complexes, phen serves as a bidentate ligand, binding metal centers with the two nitrogen atoms. Examples include Mo(CO)4(phen), derived from Mo(CO)6 and [Fe(phen)3]2+.