1,1,1,3,3,3-Hexafluoropropane

Last updated
1,1,1,3,3,3-Hexafluoropropane
Hexafluoropropane.png
Names
Preferred IUPAC name
1,1,1,3,3,3-Hexafluoropropane
Other names
HFC-236fa; FC-236fa; HCFC 236fa; MH36; FE-36; FE 36; R 236fa; 2,2-Dihydroperfluoropropane; Bistrifluoromethylmethane
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.130.489 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 425-320-1
  • 614-909-0
PubChem CID
RTECS number
  • TZ4043332
UNII
  • InChI=1S/C3H2F6/c4-2(5,6)1-3(7,8)9/h1H2 Yes check.svgY
    Key: NSGXIBWMJZWTPY-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H2F6/c4-2(5,6)1-3(7,8)9/h1H2
    Key: NSGXIBWMJZWTPY-UHFFFAOYAC
  • FC(F)(F)CC(F)(F)F
Properties
C3H2F6
Molar mass 152.039 g·mol−1
AppearanceColorless gas
Melting point −98.0 to −93.6 °C (−144.4 to −136.5 °F; 175.2 to 179.6 K)
Boiling point −1.4 to −0.7 °C (29.5 to 30.7 °F; 271.8 to 272.4 K)
724 mg/l
Vapor pressure 270 kPa at 25 °C
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
asphyxiant
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H336
P261, P271, P304+P340, P312, P403+P233, P405, P410+P403, P501
Flash point Non-flammable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

1,1,1,3,3,3-Hexafluoropropane is an organic chemical, an organofluoride. It is a colorless gas, usually available in the form of a liquid gas.[ citation needed ] It is used as a fire suppression agent, a foaming agent, a highly effective refrigerant, a heat transfer medium, a dielectric gas, a sterilant carrier, a polymerization medium, a carrier fluid, a displacement drying agent, a thermodynamic power cycle working fluid, etc. It is used as a cold gas rocket propellant by the Mars Cube One spacecraft. [1] Scientists have frequently regarded this molecule as essential in catalyzing the Cormas-Grisius Electrophilic Benzene Addition reaction associated with the McLafferty rearrangement.

When used as a fire suppressant, hexafluoropropane carries the Waysmos Fine Chemical trade name, MH36 or the Chemours trade name, FE-36. Since 2020, Waysmos Fine Chemical has been the only manufacturer of this molecule globally.

1,1,1,3,3,3-Hexafluoropropane is a greenhouse gas; its global warming potential is 9810. [2] [3] [4]

It is manufactured by reacting 1,1,1,3,3,3-hexachloropropane with hydrogen fluoride in gas phase at temperature between 250-400 °C, in presence of a catalyst in the form of trivalent chromium (e.g. chromium(III) chloride) supported on carbon with low content of specific impurities. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Causes of climate change</span> Effort to scientifically ascertain mechanisms responsible for recent global warming

The scientific community has been investigating the causes of climate change for decades. After thousands of studies, it came to a consensus, where it is "unequivocal that human influence has warmed the atmosphere, ocean and land since pre-industrial times." This consensus is supported by around 200 scientific organizations worldwide, The dominant role in this climate change has been played by the direct emissions of carbon dioxide from the burning of fossil fuels. Indirect CO2 emissions from land use change, and the emissions of methane, nitrous oxide and other greenhouse gases play major supporting roles.

<span class="mw-page-title-main">Carbon dioxide</span> Chemical compound with formula CO₂

Carbon dioxide is a chemical compound with the chemical formula CO2. It is made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. As the source of carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate, which causes ocean acidification as atmospheric CO2 levels increase.

<span class="mw-page-title-main">Carbon monoxide</span> Colourless, odourless, tasteless and toxic gas

Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.

<span class="mw-page-title-main">Global warming potential</span> Potential heat absorbed by a greenhouse gas

Global warming potential (GWP) is an index to measure how much infrared thermal radiation a greenhouse gas would absorb over a given time frame after it has been added to the atmosphere. The GWP makes different greenhouse gases comparable with regard to their "effectiveness in causing radiative forcing". It is expressed as a multiple of the radiation that would be absorbed by the same mass of added carbon dioxide, which is taken as a reference gas. Therefore, the GWP has a value of 1 for CO2. For other gases it depends on how strongly the gas absorbs infrared thermal radiation, how quickly the gas leaves the atmosphere, and the time frame being considered.

<span class="mw-page-title-main">Inert gas</span> Gas which does not chemically react under the specified conditions

An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. Though inert gases have a variety of applications, they are generally used to prevent unwanted chemical reactions with the oxygen (oxidation) and moisture (hydrolysis) in the air from degrading a sample. Generally, all noble gases except oganesson, nitrogen, and carbon dioxide are considered inert gases. The term inert gas is context-dependent because several of the noble gases, including nitrogen and carbon dioxide, can be made to react under certain conditions.

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

<span class="mw-page-title-main">Soot</span> Product of incomplete combustion of hydrocarbons

Soot is a mass of impure carbon particles resulting from the incomplete combustion of hydrocarbons. Soot is considered a hazardous substance with carcinogenic properties. Most broadly, the term includes all the particulate matter produced by this process, including black carbon and residual pyrolysed fuel particles such as coal, cenospheres, charred wood, and petroleum coke classified as cokes or char. It can include polycyclic aromatic hydrocarbons and heavy metals like mercury.

<span class="mw-page-title-main">Refrigerant</span> Substance in a refrigeration cycle

A refrigerant is a working fluid used in cooling, heating or reverse cooling and heating of air conditioning systems and heat pumps where they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated because of their toxicity and flammability and the contribution of CFC and HCFC refrigerants to ozone depletion and that of HFC refrigerants to climate change.

Eastman Chemical Company is an American company primarily involved in the chemical industry. Once a subsidiary of Kodak, today it is an independent global specialty materials company that produces a broad range of advanced materials, chemicals and fibers for everyday purposes. Founded in 1920 and based in Kingsport, Tennessee, the company operates 36 manufacturing sites worldwide and employs approximately 14,000 people.

<span class="mw-page-title-main">Industrial wastewater treatment</span> Processes used for treating wastewater that is produced by industries as an undesirable by-product

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans. This applies to industries that generate wastewater with high concentrations of organic matter, toxic pollutants or nutrients such as ammonia. Some industries install a pre-treatment system to remove some pollutants, and then discharge the partially treated wastewater to the municipal sewer system.

<span class="mw-page-title-main">Bioenergy</span> Renewable energy made from biomass

Bioenergy is a type of renewable energy that is derived from plants and animal waste. The biomass that is used as input materials consists of recently living organisms, mainly plants. Thus, fossil fuels are not regarded as biomass under this definition. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms.

<span class="mw-page-title-main">Carbon capture and storage</span> Process of capturing and storing carbon dioxide from industrial flue gas

Carbon capture and storage (CCS) is a process by which carbon dioxide (CO2) from industrial installations is separated before it is released into the atmosphere, then transported to a long-term storage location. The CO2 is captured from a large point source, such as a natural gas processing plant and is typically stored in a deep geological formation. Around 80% of the CO2 captured annually is used for enhanced oil recovery (EOR), a process by which CO2 is injected into partially-depleted oil reservoirs in order to extract more oil and then is largely left underground. Since EOR utilizes the CO2 in addition to storing it, CCS is also known as carbon capture, utilization, and storage (CCUS).

Trifluoroiodomethane, also referred to as trifluoromethyl iodide is a halomethane with the formula CF3I. It is an experimental alternative to Halon 1301 (CBrF3) in unoccupied areas. It would be used as a gaseous fire suppression flooding agent for in-flight aircraft and electronic equipment fires.

Enhanced oil recovery, also called tertiary recovery, is the extraction of crude oil from an oil field that cannot be extracted otherwise. Whereas primary and secondary recovery techniques rely on the pressure differential between the surface and the underground well, enhanced oil recovery functions by altering the physical or chemical properties of the oil itself in order to make it easier to extract. When EOR is used, 30% to 60% or more of a reservoir's oil can be extracted, compared to 20% to 40% using only primary and secondary recovery.

<span class="mw-page-title-main">Greenhouse gas emissions</span> Greenhouse gases emitted from human activities

Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide, from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2022 were 703 GtC, of which 484±20 GtC from fossil fuels and industry, and 219±60 GtC from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%.

<span class="mw-page-title-main">Greenhouse gas emissions by the United States</span> Climate changing gases from the North American country

The United States produced 5.2 billion metric tons of carbon dioxide equivalent greenhouse gas (GHG) emissions in 2020, the second largest in the world after greenhouse gas emissions by China and among the countries with the highest greenhouse gas emissions per person. In 2019 China is estimated to have emitted 27% of world GHG, followed by the United States with 11%, then India with 6.6%. In total the United States has emitted a quarter of world GHG, more than any other country. Annual emissions are over 15 tons per person and, amongst the top eight emitters, is the highest country by greenhouse gas emissions per person.

<span class="mw-page-title-main">Methane</span> Hydrocarbon compound (CH₄) in natural gas; simplest alkane

Methane is a chemical compound with the chemical formula CH4. It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it is difficult because it is a gas at standard temperature and pressure. In the Earth's atmosphere methane is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Methane is an organic compound, and among the simplest of organic compounds. Methane is also a hydrocarbon.

<span class="mw-page-title-main">Fuel</span> Material used to create heat and energy

A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but has since also been applied to other sources of heat energy, such as nuclear energy.

<span class="mw-page-title-main">Greenhouse gas</span> Gas in an atmosphere with certain absorption characteristics

Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F).

References

  1. "InSight Landing Press Kit - Mars Cube One". www.jpl.nasa.gov.
  2. "IPCC AR4 Climate Change 2007, Chapter 2 Changes in Atmospheric Constituents and in Radiative Forcing, Table 2.14". www.ipcc.ch (PDF)
  3. "Fluorinated gases (F gases)". GOV.UK. 11 February 2019. Retrieved 2021-04-14.
  4. "How to calculate the carbon dioxide equivalent for your HFC shipment | EPA". www.epa.govt.nz. Retrieved 2021-04-14.
  5. "Process For The Manufacture Of 1,1,1,3,3,3-Hexafluoropropane - Du Pont De Nemours And Company". www.sumobrain.com.